

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

Ground Investigations Ireland

Mill Road

Ground Investigation Report

DOCUMENT CONTROL SHEET

Project Title	Mill Road
Engineer	DBFL Consulting Engineers
Project No	8660-04-19
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Final	J Duggan	A McDonnell	A McDonnell	Dublin	03 September 2019

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

CONTENTS

1.0	Preamble
2.0	Overview
2.1.	Background3
2.2.	Purpose and Scope3
3.0	Subsurface Exploration3
3.1.	General
3.2.	Trial Pits4
3.3.	Cable Percussion Boreholes4
3.4.	Rotary Boreholes4
3.5.	Insitu Plate Bearing Test5
3.6.	Laboratory Testing
4.0	Ground Conditions
4.1.	General6
4.2.	Groundwater7
4.3.	Laboratory Testing7
5.0	Recommendations & Conclusions8
5.1.	General8
5.2.	Foundations8
5.3.	External Pavements8
5.4.	Excavations8
5.5.	Soil Reuse9

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Trial Pit Records
Appendix 3	Cable Percussion Borehole Records
Appendix 4	Rotary Core Records
Appendix 5	Plate Test Results
Appendix 6	Laboratory Testing

1.0 Preamble

On the instructions of DBFL Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between May and June 2018 at the site of the proposed residential development at Mill Road, Drogheda, Co. Louth.

2.0 Overview

2.1. Background

It is proposed to construct a new residential development with associated services, access roads and car parking at the proposed site. The site is currently greenfield, with a small area of hardstanding and a disused agricultural building near the entrance. It is situated on the eastern outskirts of Drogheda Town. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 21 No. Trial Pits to a maximum depth of 3.5m BGL
- Carry out 1 No. Cable Percussion boreholes to a maximum depth of 4.7m BGL
- Carry out 13 No. Rotary Core Boreholes to a maximum depth of 15.6m BGL
- Installation of 1 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a JCB 3CX tracked excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata.

Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 3 of this Report.

3.4. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a

wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit, and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 4 of this Report.

3.5. Insitu Plate Bearing Test

The plate bearing tests were carried out using a 305mm or 450mm diameter plate at the locations shown on the site plan in Appendix 1. The plate was loaded in increments using a hydraulic jack and an excavator to provide a reaction and the displacement was monitored in accordance with BS1377 Part 9 using independently mounted digital strain gauges. The constrained modulus and equivalent CBR are calculated in accordance with HD29/75 and are provided on the test reports in Appendix 5 of this Report.

3.6. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental testing, including pH and sulphate testing was carried out by Jones Environmental Laboratory in the UK.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer and Moisture Condition Value (MCV) tests were carried out in NMTL's Geotechnical Laboratory in Carlow.

Rock strength testing including Atterburg limits, acid soluble sulphate, sulfur content, water soluble sulphate, LA abrasion, flakiness index and water absorption of aggregate testing was carried out in Prosoils Lab in Doncaster.

The results of the laboratory testing are included in Appendix 6 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Topsoil
- Made Ground
- Granular Deposits
- Cohesive Deposits

TOPSOIL: Topsoil was encountered in almost all the exploratory holes and was present to a maximum depth of 0.7m BGL.

MADE GROUND: Made Ground deposits were encountered from the surface in TP02 and TP04 and was present to a relatively consistent depth of between 0.5m and 0.6m BGL. These deposits were described generally as *brown slightly sandy gravelly Clay with occasional cobbles, red brick and ceramic fragments.*

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground or Topsoil and were described typically as *firm brown sandy slightly gravelly CLAY with occasional cobbles* generally overlying a *firm or firm to stiff grey/brown slightly sandy gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was soft to firm to 1.5m BGL becoming firm to stiff or stiff below this depth in the majority of the exploratory holes. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs.

GRANULAR DEPOSITS: The granular deposits were encountered generally at the base of the cohesive deposits and were typically described as *Greyish brown clayey sandy subangular to subrounded fine to coarse Gravel with many subangular to subrounded cobbles and occasional boulders* or *Grey/brown clayey very gravelly fine to coarse SAND with many subangular to rounded cobbles and occasional boulders*. The secondary sand/gravel and clay constituents varied across the site and with depth while occasional or frequent cobble and boulder content also present where noted on the exploratory hole logs.

WEATHERED BEDROCK: In TP10 and TP20 weathered rock was encountered which was digable with the JCB 3CX to a depth of up to 0.6m below the top of the stratum. The trial pits were terminated upon encountering the more competent bedrock, in which further excavation became more difficult. This material was recovered typically as angular gravel and cobbles of Limestone however there was some variability in

the fracture spacing and the ease at which the excavator could progress. Some clay and sand were also present with the rock mass either from weathering or as infilling to fractures which were opened upon excavation.

BEDROCK: The rotary core boreholes recovered Weak to medium strong dark grey fine grained fossiliferous LIMESTONE interbedded with weak black fine grained laminated Mudstone. This is typical of the Mornington Formation, which is noted on the geological mapping of the proposed site.

The depth to rock varies from 2.0m BGL in RC08 to a maximum of 11.2m BGL in RC02 at the south eastern side of the site. The total core recovery is good, typically 100% with some of the uppermost runs dropping to 80 or 90%. The SCR and RQD both are relatively poor in the upper weathered zone, often recovered as non-intact, however both indices show an increase with depth.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible excavation was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason a standpipe was installed in RC05 to allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 6 of this Report.

4.3. Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity, while the rock was non plastic. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands and gravels ranging between 6.7% and 48.8% generally with fines contents of 15.8 to 63.3%.

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

The results of the Waste Acceptance Criterial Test Suite are presented with the individual parameter limits for "Inert" "Non Hazardous" and "Hazardous" as outlined within European Council Directive 1999 131/EC Article 16 Annex II, "Criteria and procedures for the acceptance of waste at landfills". The intended disposal site should be consulted to ensure compliance with their specific requirements.

The results indicate that the results are below the inert limits, all spoil disposed of off-site should be sent to a suitably licenced facility. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation.

The results from the completed laboratory testing is included in Appendix 6 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

An allowable bearing capacity of 100 kN/m² is recommended for conventional strip or pad foundations on the firm to stiff cohesive deposits or medium dense granular deposits at a depth of 2.2m BGL. Where the cohesive deposits are deeper, such as at the location of BH01 and RC02, lean mix trench fill to a depth of 3.7m BGL is recommended to achieve the recommended allowable bearing capacity.

In any part of the site, should part of the foundation be on rock we would recommend that all the foundations of the unit in question be lowered to the competent rock stratum to avoid differential settlement.

The pH and sulphate testing completed on samples recovered from the trial pits indicates the pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005. No special precautions are required for concrete foundations to prevent sulphate attack.

5.3. External Pavements

The proposed pavements are recommended to be designed in accordance with the CBR test results included in the Appendixes of this Report. The low CBR test results indicate that a capping layer or a sufficient depth of crushed stone fill may be required. Plate bearing tests are recommended at the time of construction to verify the design assumptions for the proposed pavement make up and to verify adequate compaction has been achieved.

The use of a geogrid and separation membrane may improve the performance of the proposed pavement and enable a more economical pavement design to be achieved, a specialist supplier is recommended to advise of the required strength, depth and type of geotextile for the proposed design.

5.4. Excavations

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

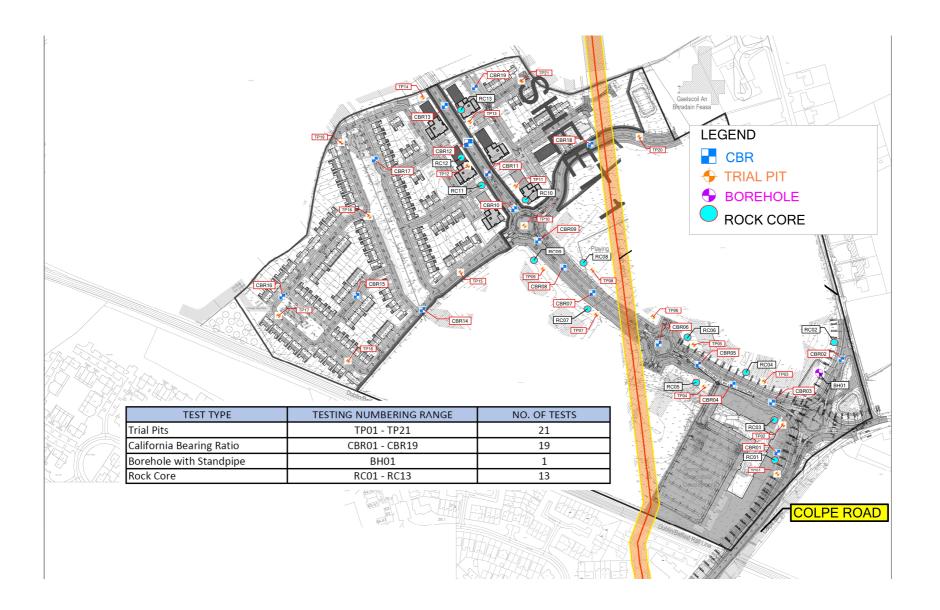
Any excavations which penetrate the granular deposits will require to be appropriately battered or the sides supported and are likely to require dewatering due to the groundwater seepages noted in the exploratory hole logs in the Appendices of this Report.

The groundwater and stability noted on the trial pit logs should be consulted when determining the most appropriate construction methods for excavations. Generally, where significant excavations are required in water bearing granular deposits a cut-off wall may be more cost effective than extensive dewatering. An assessment by a specialist dewatering contractor is recommended to determine the most cost effective approach to the proposed excavation.

Excavations in the upper cohesive and weathered rock deposits are expected to be excavatable with conventional excavation equipment, with zones of more intact bedrock below this depth requiring rock breaking techniques. Based on the fracture spacing, the rock strength testing and Pettifer & Fookes (1994) Revised Excavatability Graph, the Limestone ranges from hard digging to hard ripping, however the zones recovered as non-intact should be easy to hard digging. The JCB 3CX was generally able to excavate to depths of up to 0.6m below the top of the weathered rock in places, and became difficult to excavate within the confines of the trial pit on encountering the more competent rock

Any material to be removed off site should be disposed of to a suitably licensed landfill.

5.5. Soil Reuse


The classification testing indicates that all the cohesive samples tested would be classified as Class 2 General Cohesive Fill, suitable for general earthworks but not suitable for structural fill, capping or road base material. The grading dominates this particular classification with none of the PSDs returned a fines content of less than 15%.

The upper firm or firm to stiff cohesive deposits would require treatment during the earthworks to reduce the moisture content to an acceptable level for use as Class 2 Fill. If used as fill for purposes other than landscaping, the moisture content should be carefully monitored and controlled to ensure it is within +/- 2% of the OMC. The MCV testing at NMC varies with most falling below 8 which, for glacial till soils, is considered the value at which material is suitable for reuse. With reduction of the moisture content to within the OMC levels an increase in the MCV and CBRs can result which would then deem the material suitable for reuse as Class 2 Fill.

The rock testing results confirm the material complies with 6F2 (Capping) of Specification for Road Works Series 600, Annex E of SR21:2014 + A1:2016 and the requirements of Clause 808 of Specification for Road Works Series 800 – Road Pavements – Unbound and Cement Bound Mixtures, with the exception of the flakiness index which exceeds the Clause 808 specification of 35.

Any material to be removed off site should be disposed of to a suitably licenced landfill.

APPENDIX 1 - Site Location Plan

APPENDIX 2 - Trial Pit Records

Mechine : UCB SCX Wethod : Tini PA Definit Sample / Teets Wethod : Tini PA Definit Sample / Teets Wethod Pield Records 0:0000 Client Definition 0:0000 Client 0:00000 Client 0:0000 Client 0:0000 C	A	Š	Gro	und In	vesti ww	gations /w.gii.ie	Ireland	d Ltd	Site Mill Road, Drogheda, Co.	Meath	Trial Pi Numbe TP0
Decator Decator Decator Enginer Enginer Brance Dom Sample / Tests Kin Field Records Kin Image: Supple / Tests Determine				Dimens			Grou	nd Level (mOD)	Client		Job Numbe 8660-04
*an ·				Locatio	'n		Dates	5 01/05/2019- 02/05/2019			Sheet 1/1
Image: Stow seepage(1) at 1.60m. 0.30 Find dark grayblack slightly andy gravely CLAY with meny anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit any law of the submit and submit any law of the submit and submit anylar cobless of Linestone. Gravel is angular to submit any law of the submit anylar cobless of Linestone. Gravel is angular to submit any law of the submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobless of Linestone. Gravel is angular to submit anylar cobles of Linestone. Gravel is angular to submit anylar cobles of Linestone. Gravel is angular to submit anylar cobles of Linestone. Gravel is angular to submit any law of the submit anylar cobles of Linestone. Gravel is angular to submit any law of the submit anylar cobles of Linestone. Gravel is angular to submit any law of the submit anylar cobles of Linestone. Gravel is angular to submit any law of the submit anylar cobles of Linestone. Gravel is angular to submit any law of the submit anylar cobles of Linestone. Gravel is angular to submit any law of the submit any law of	Depth (m)	ו	Sample / Tests	Water Depth (m)	F	ield Records	Leve (mOE	el Depth D) (m) (Thickness)	C	Description	Legend
								. (0.30) . (0.30) . (1.30) 	Dark brown sandy TOPS0 Firm dark grey/black sligh many angular cobbles of subrounded Obstruction: Boulder/roo Complete at 1.60m Remarks Trial Pit stable	OIL the standy gravelly CLAY with Limestone. Gravel is angular to the standard st	
		•							Trial Pit backfilled upon con	npletion	
		•						· .			
		•			•	· ·		· ·			
Scale (approx) Logged By Figure No.			• •	•	-						

Machine : JCB 3CX Dimensions Ground Level (mOD) Client Job Numb 8660-04 Method : Trial Pit Location Dates 01/05/2019- 02/05/2019 Engineer DBFL Sheet 1/1 Denth Water Level Denth Denth Image: Client C	RELAND	Grou	nd In	vestig ww	gations I w.gii.ie	reland	Ltd	Site Mill Road, Drogheda, Co.	Meath	Trial Pi Numbe TP02
Depth Sample / Texts Description Legend 1.00 B Field Records MOSE Depth Description Legend 1.00 B Field Records MOSE Depth Description Legend 1.00 B Field Records Loss Comparison			Dimens	ions		Ground	Level (mOD)	Client		Job Numbe 8660-04
1:00 B B Fast ingress(1) at 1.70m. POSSBUE MADE GROUND: Dark brown slightly sandy: gravely CLAW with some tooles .00 B Fast ingress(1) at 1.70m. Image: sandy slightly gravely CLAW with some tooles .00 B Fast ingress(1) at 1.70m. Image: sandy slightly gravely CLAW with some tooles .00 Fast ingress(1) at 1.70m. Image: sandy slightly gravely CLAW with some tooles .00 Fast ingress(1) at 1.70m. Image: sandy slightly gravely CLAW with some tooles .01 Fast ingress(1) at 1.70m. Image: sandy slightly gravely CLAW with some tooles .02 Fast ingress(1) at 1.70m. Image: sandy slightly gravely CLAW with some tooles .02 Fast ingress(1) at 1.70m. Image: sandy slightly gravely CLAW with some tooles .03 Fast ingress(1) at 1.70m. Image: sandy slightly gravely CLAW with some tooles .03 Fast ingress(1) at 1.70m. Image: sandy slightly gravely CLAW with some tooles .04 Fast ingress(1) at 1.70m. Image: sandy slightly gravely CLAW with some tooles .05 Fast ingress Tal Pit ingress Image: sandy slightly gravely CLAW with some tooles .05 Fast ingress Tal Pit ingress Image: sandy slightly gravely CLAW with some tooles <			Locatio	n		Dates 07	1/05/2019- 2/05/2019			Sheet 1/1
J.50 B B Fast ingress(1) at 1.70m. 0.50 First horon motified gray early dightly gravely. CLAY with many cookes of Lineatone J.50 B Fast ingress(1) at 1.70m. 160 Gray digray gravely fine to course SAND with many dightly gravely. CLAY with many dig	Depth (m)	Sample / Tests	Water Depth (m)	Fi	eld Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
	1.50			Fast ingre	ess(1) at 1.70m.		0.50 (1.10) 1.60 1.90 1.90	Firm brown mottled grey s occasional angular to suba Grey clayey gravelly fine t angular cobbles of Limest Obstruction: Boulder/roc Complete at 1.90m	andy slightly gravelly CLAY v angular cobbles of Limestone	
						·		Groundwater encountered a	at 1.70m BGL, fast ingress	
· · · · · · · · · · · · · · · · · · ·	· ·		·	·		·				
	· ·		•	•						
							s	cale (approx)	Logged By	Figure No.

Machine : JCE Method : Tria		Dimens	n	ield Rec	ords	Dates 01	Level (mOD)	Engineer DBFL	escription th rootlets	Job Numbe 8660-04 Sheet 1/1 Legend
				ield Rec	ords	01 02	2/05/2019 Depth (m) (Thickness) 	DBFL		1/1
		Water Depth (m)	Fi	ield Rec	ords	Level (mOD)				Legend
.00	В						- (0.70)	Brown sandy TOPSOIL wit	h rootlets	
.00	В									
							0.70	Soft to firm light brown sar occasional subangular to s	ndy slightly gravelly CLAY with subrounded cobbles of Limestor	
							(1.20)			
00	В						1.90 (1.10)	Firm brown mottled grey sa some subangular to subro	andy slightly gravelly CLAY with unded cobbles of Limestone	
20	В							Stiff grey slightly sandy gra subangular cobbles and or of Limestone	avelly CLAY with many angular t ccasional subrounded boulders	• • • • • • • • • • • • • •
			Slow see	epage(1)	at 3.50m.		3.50	Complete at 3.50m		
Plan .							•••	Remarks Trial Pit stable		·
								Groundwater seepage at 3.5 Trial Pit backfilled upon com	j0m BGL pletion	
						•				
						-				
		·				-				
				•		•	 s	cale (approx)	Logged By Fig	jure No.

Location Dates Engineer She	Machine :			Dimens		ww.gii		Ground	Level (mOD)	Client		Job Numb
Deptit Sample / Tests Veter (Internet and Deptition) Deptition (Internet and Deptition) Description Large 1.00 B Image: Sample / Tests Veter (Internet and Deptition) Image: Sample / Tests Veter (Internet and Deptition) MADE GROUND: Groy samply angular fine to coartee Oracid (Internet and Deptition) Image: Sample / Tests I	Method :	: Trial	Pit	Locatio	n			01	1/05/2019-			8660-04 Sheet
1.50 B B Image: second s	Dẹpțh			Water					1			1/1
1:50 B B Image: second control of the second control of	(m)		Sample / Tests	Depth (m)		Field Re	cords	(mOD)	(m) (Thickness)		Description	Legend
.00 B	.50		В						0.20 (0.40)	with many angular cobble MADE GROUND: Brown occasional cobbles, red b	s slightly sandy gravelly Clay wit rick and ceramic fragments	h
100 B Slow seepage(1) at 3.00m. Image: constraint of the product										Firm sandy slightly gravel subangular cobbles and o boulders of Limestone	ly CLAY with many angular to occasional angular to subangul	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Plan .	.00		В		Slow se	eepage(1) at 3.00m.			Greyish brown clayey sar to coarse GRAVEL with m cobbles and occasional s	ndy subangular to subrounded nany subangular to subrounded ubrounded boulders of Limesto	
									- 3.40 	Complete at 3.40m		
Groundwater seepage at 3.00m BGL Trial Pit backfilled upon completion	Plan				•	•	•	• •	•••	Trial pit unstable below 2 2	Dm BGL	
										Groundwater seepage at 3. Trial Pit backfilled upon con	00m BGL npletion	
					•				 			

RELAND	Grou	ind In	vestię ww	gatic w.gii.	ons Ire ^{ie}	land	Ltd	Site Mill Road, Drogheda, Co. Meath	Trial Pi Numbe TP0
lachine:J0 lethod:Ti		Dimens	ions			Ground	Level (mOD)	Client	Job Numbe 8660-04-
		Locatio	n			Dates	1/05/2019- 2/05/2019	Engineer DBFL	
Depth (m)	Sample / Tests	Water Depth (m)	Fi	ield Rec	ords	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50	в		Slow see	page(1)	at 3.10m.		(0.10) (0.60) (0.60) (0.70) (2.80) (2.80)	Brown sandy TOPSOIL Firm brown slightly sandy gravelly CLAY with occasional subangular cobbles of Limestone. Gravel is fine to coarse angular to subangular Grey very sandy angular to subrounded fine to coarse GRAVEL with occasional subangular cobbles of Limestone	
Ylan .								Complete at 3.50m Remarks Trial Pit unstable below 0.70m BGL Groundwater seepage at 3.10m BGL Trial Pit backfilled upon completion	
							•••	Trial Mit backfilled upon completion	
·			•		•	•	•••		
		•	•	•	•		· · ·		
							<u></u>	icale (approx) Logged By Figur	e No. 04-19.TF

	Grou	ind Inv	estigations www.gii.ie	Ireland	Ltd	Site Mill Road, Drogheda, Co. Meath	Trial Pit Numbe TP06
lachine : Jo lethod : To		Dimensio	ns	Ground	Level (mOD)	Client	Job Numbe 8660-04-
		Location		Dates	1/05/2019- 2/05/2019	Engineer DBFL	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50 .00	в				(0.30) (0.30) (2.40) (2.40) (0.30)	Light brown TOPSOIL Firm brown slightly sandy gravelly CLAY with many subangular to subrounded cobbles of Limestone. Gravel is fine to coarse angular to subangular Stiff brown slightly sandy gravelly CLAY with many angular to subangular cobbles of Limestone and lenses of brown fine to coarse Sand Obstruction: Boulder/rockhead Complete at 3.00m	ល់ទំនាំទាំងស្រុងស្រុងស្រុងស្រុងទាំងទាំងទាំងទាំងទាំង ទំនាំងទោសសំរាសសំរាសសំរោសសំរោសសំរោសសំរោស ទំនាំងសំរោសសំរោសសំរោសសំរោសសំរោសសំរោស
						Trial Pit stable No groundwater encountered Trial Pit backfilled upon completion	
	· ·		· · ·		 		u re No. 0-04-19.TF

Machine : JC			www.gii.ie		Ltd	Mill Road, Drogheda, Co.	Meath	TP07
lethod : Tri		Dimensio	ns	Ground	Level (mOD)	Client		Job Numbe 8660-04-
		Location		Dates 01 02	1/05/2019- 2/05/2019	Engineer DBFL		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	C	Description	Legend
.50	в				(0.10) (0.10)	Light brown TOPSOIL Firm brown sandy slightly to subangular cobbles, oc Limestone and lenses of I angular to subangular	r gravelly CLAY with many angula ccasional rounded boulders of brown/grey Sand. Gravel is	
Plan .					• •	Remarks Trial Pit stable	ad	
		·				Trial Pit stable No groundwater encountere Trial Pit backfilled upon con	npletion	
•	· ·	•	· · ·		 			
				·	s	Scale (approx)	Logged By Fig	jure No.

A	Grou	nd Inv	estigations www.gii.ie	Ireland	Ltd	Site Mill Road, Drogheda, Co. Meath	Trial Pit Numbe TP08
lachine : JC lethod : Tr		Dimensio	ons	Ground	I Level (mOD)	Client	Job Numbe 8660-04-
		Location		Dates 0 0	1/05/2019- 2/05/2019	Engineer DBFL	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50 .50	в				(0.40) 0.40 1.20)	Dark brown sandy TOPSOIL with rootlets and timber Firm brown sandy slightly gravelly CLAY with occasional angular to subrounded cobbles and subangular boulders of Limestone Obstruction: Boulders/rockhead Complete at 1.60m	
•		·		•		Trial Pit stable No groundwater encountered Trial Pit backfilled upon completion	
·		·			· ·	I rial Pit backfilled upon completion	
		·			•••		
					· ·		
		·		·	 S	cale (approx) Logged By Fig	ure No.

	Grou	ind Inv	estigations www.gii.ie	Ireland	Ltd	Site Mill Road, Drogheda, Co. Meath	Trial Pit Number TP09
Machine : J Method : T		Dimensio	ons	Ground	l Level (mOD)	Client	Job Number 8660-04-
		Location		Dates	1/05/2019- 2/05/2019	Engineer DBFL	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50 .50	в				(0.20) 0.20 (0.70) (0.90) 1.80	Dark brown TOPSOIL Firm brown sandy slightly gravelly CLAY with occasional subangular cobbles of Limestone Firm to stiff greyish brown slightly sandy gravelly CLAY with many angular to subangular cobbles of Limestone Obstruction: Boulders/rockhead Complete at 1.80m	
						Trial Pit stable No groundwater encountered Trial Pit backfilled upon completion	
		•		•	· ·		
					s		re No .)-04-19.TP

lachine : JCB 3C lethod : Trial Pit Depth (m) Sar		Dimension Location Water Depth (m)	ns		Ground	Level (mOD)	Client		Job Numbe
Depth (m) Sar	nple / Tests				<u> </u>				8660-04-
Depth (m) Sar	nple / Tests	Water Depth (m)				/05/2019- 2/05/2019	Engineer DBFL		Sheet 1/1
			Field Re	cords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
50 B						(0.20) 0.20 (0.80)	Brown TOPSOIL Firm brown sandy slightly subangular to subrounded	gravelly CLAY with occasional cobbles of Limestone	
50 В						1.00 (1.10)	Grey/brown clayey very gr many subangular to round subangular boulders of Lir slightly sandy gravelly Clay	avelly fine to coarse SAND wi ed cobbles, occasional nestone and pockets of dark g /	rey
						2.10	Grey/brown angular to sub BOULDERS with pockets gravelly Clay. (Hard diggin	of brown and grey slightly san	0.000 0.000 0.000
							Obstruction: Boulder/Roo	ckhead	
lan .						•••	Remarks Trial Pit unstable below 1.00	m BGI	
							Trial Pit backfilled upon com	d pletion	
	 	•	· ·	·	· ·	· · ·			
						s	cale (approx)	Logged By F	igure No.

A	Gro	und Inv	vestigati www.gi	ons Ir ii.ie	eland	Ltd	Site Mill Road, Drogheda, Co.	Meath	Trial Pit Number TP11
Machine: Method :		Dimensi	ons		Ground	Level (mOD)	Client		Job Number 8660-04-1
		Location	1		Dates 01 02	/05/2019- 2/05/2019	Engineer DBFL		Sheet 1/1
Depth (m)	Sample / Test	s Water Depth (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
).50	в					(0.20) 0.20 (0.20) (0.20) (0.20)	Brown TOPSOIL Firm brown sandy slightly subangular cobbles	gravelly CLAY with occasiona	
						- 1.00	Firm to stiff brown slightly angular to subangular cob	sandy gravelly CLAY with ma bles of Limestone	<u></u>
.00	в					(1.00) 2.00 2.00 (1.30)	Stiff brown slightly sandy o to subangular cobbles of L	gravelly CLAY with many angu imestone	<u> </u>
						- 3.30 - 3.30	Complete at 3.30m		
Plan .					•	•••	Remarks		
							Trial Pit stable No groundwater encountere Trial Pit backfilled upon com	d Ipleton	
		·							
		·		•	- ·	· · ·			
		•				S	cale (approx)	Logged By	Figure No.

RELAND	Grou	ind Inv	estigations www.gii.ie	Ireland	Ltd	Site Mill Road, Drogheda, Co.	Meath	Trial Pi Numbe TP12
Machine : Jo Method : To		Dimensio	ns	Ground	I Level (mOD)	Client		Job Numbe 8660-04
		Location		Dates 0 02	1/05/2019- 2/05/2019	Engineer DBFL		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
50	В				(0.20) 0.20 (0.20)	Brown TOPSOIL Soft to firm sandy slightly subangular cobbles	gravelly CLAY with occasional	
					- 1.00 - 1.00 - (0.90)	Firm brown slightly sandy subangular cobbles	gravelly CLAY with occasional	
20	В				- 1.90 - 1.90 	Firm to stiff grey/brown sli many angular to subangul Limestone and pockets of is fine to coarse angular to	ghtly sandy gravelly CLAY with ar cobbles and boulders of grey fine to coarse Sand. Gra subangular	
					- 3.00	Obstruction: Boulder/roc Complete at 3.00m	khead	
Plan					 	Remarks		
				•		Trial Pit stable No groundwater encountere Trial Pit backfilled upon corr	d pletion	
					s	Scale (approx)	Logged By F	igure No.
						1:25	JD 8	660-04-19.TF

A	Grou	nd Inv	estigations www.gii.ie	Ireland	Ltd	Site Mill Road, Drogheda, Co. Meath	Trial Pit Number TP13
Machine:J Method :Ti		Dimensio	ns	Ground	l Level (mOD)	Client	Job Number 8660-04-
		Location			1/05/2019- 2/05/2019	Engineer DBFL	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50 .50	в				(0.20) 0.20 (0.20) 0.40 (0.90) 1.30 (0.70) 2.00	Brown TOPSOIL Soft brown sandy slightly gravelly CLAY with many rounded to subrounded cobbles Grey/brown very sandy clayey angular to subangular fine to coarse. GRAVEL with many angular to subangular cobbles and boulders of Limestone and pockets of brown sandy slightly gravelly Clay Firm to stiff brown slightly sandy gravelly CLAY with many angular to subrounded cobbles, occasional boulders of Limestone and pockets of angular to subangular fine to coarse sandy Gravel Obstruction: Boulder/rockhead Complete at 2.00m	
				•		Trial Pit stable No groundwater encountered Trial Pit backfilled upon completion	
		•		·			
				·			
•							
					s	cale (approx) Logged By Figu	re No.

	Crou		estiga www.g	tions Ir gii.ie	eland	Ltd	Site Mill Road, Drogheda, Co.	Meath	Trial Pit Numbe TP14
Machine : JCB Method : Trial		Dimensio	ons		Ground	Level (mOD)	Client		Job Numbe 8660-04-
		Location	I		Dates 01 02	1/05/2019- 2/05/2019	Engineer DBFL		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field I	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
.50	в в в			·		•••	Firm to stiff greyish brown many angular to subangul boulders of Limestone Stiff greyish brown slightly angular cobbles and occa Obstruction: Boulder/roc Complete at 2.50m		
		•	· ·	•	•		No groundwater encountere Trial Pit backfilled upon com	a pletion	
	· ·								
	· ·		· ·			· ·			
•									

Reland	Gro	und In	vestig wwv	ations v.gii.ie	Ireland	d Ltd	Site Mill Road, Drogheda, Co. Meath	Trial Pi Numbe TP1
lachine : J lethod : T		Dimens	sions		Grou	ind Level (mOD	Client	Job Numbe 8660-04
		Locatio	'n		Dates	s 01/05/2019- 02/05/2019	Engineer DBFL	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fie	ld Records	Lev (mO	el Depth D) (m) (Thickness	Description	Legend
.50 .50	в		Slow seep	age(1) at 2.2	20m.		Brown TOPSOIL Firm brown sandy slightly gravelly CLAY with occasio subangular to subrounded cobbles Firm to stiff brown slightly sandy gravelly CLAY with n angular to subangular cobbles of Limestone and occalenses of grey fine to coarse Sand Obstruction: Boulder/rockhead Complete at 2.20m	
							Trial Pit stable Groundwater seepage at 2.20m BGL Trial Pit backfilled upon completion	
				· ·	•	· ·		
							Scale (approx) Logged By	Figure No.

IRELAND	Grou	nd In	vestiga www.g	tions Ire gii.ie	land	Ltd	Site Mill Road, Drogheda, Co.	Meath	Trial Pit Number TP16
Machine:Jo Method :⊤i		Dimens			Ground	Level (mOD)	Client		Job Number 8660-04-1
		Locatio	n		Dates	1/05/2019- 2/05/2019	Engineer DBFL		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	D	Description	Legend
D.50 1.50 Plan .	в в		Slow seepag	e(1) at 2.00m.		(0.20) (0.20) (0.80) (0.80) (2.00) (2.00) (2.00) (2.00) (2.00) (1.00) (2.00) (1.00)		gravelly CLAY with occasion I cobbles	
							Trial Pit unstable below 2.00 Consistent groundwater see Trial Pit backfilled upon com	0m BGL epage below 2.00m BGL ipletion	
 	· ·		· ·			 			
		•				s	Scale (approx)	Logged By	Figure No. 8660-04-19.TP

Method : Trial Pit Location Dates 01/D5/2019- 02/D5/2019 Engineer DBFL Sample / Tests Weter Weter Field Records Level (mOD) Depth (mOD) Description Level (mOD) Brown sandy TOPSOIL 0.50 B Image: Sample / Tests Image: Sample / Tes			und In	vestig wwv	ations Ir v.gii.ie			Site Mill Road, Drogheda, Co.	Meath	Trial Num TP	nber
Description Detection Detection Engineer DepTh Description Le 50 8 Field Records 6000 0.000			Dimens	ions		Ground	Level (mOD)	Client		Job Num 8660-0	nber
.50 B			Locatio	n		0.	1/05/2019- 2/05/2019	-		Shee 1	et /1
.50 B	Depth (m)	Sample / Tests	Water Depth (m)	Fie	ld Records	Level (mOD)	Depth (m) (Thickness)	ם	Description	Leger	nd
Trial Pit stable Groundwater seepage at 2.10m BGL Trial pit backfilled upon completion	.50			Slow seep	age(1) at 2.10m		(0.20) 0.20 0.20 0.90 0.90 2.10	Firm brown sandy slightly subangular to subrounded	andy gravelly CLAY with mar bles, occasional angular to mestone		<u>18[0]8[0]8[0]8[0]8[0]8[0]8[0]8[0]8[0]8[0]</u>
· · · · · · · · · ·				·			•••	Trial Pit stable	10m BGL		
								Trial pit backfilled upon com	pletion		
· · · · · · · · · ·				·		•					
	•	· ·			· ·		 				

Machine : J		nd Inv	estigations www.gii.ie		Ltd I Level (mOD)	Site Mill Road, Drogheda, Co. Meath	Trial Pit Number TP18
Method : T		uniensio	113	Ground	i revei (iuOD)		Job Number 8660-04-1
		Location		Dates	1/05/2019- 2/05/2019	Engineer DBFL	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
2.00	в					Brown TOPSOIL Soft to firm brown sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles Firm to stiff brown slightly sandy gravelly CLAY with many angular to subrounded cobbles and boulders of Limeston Obstruction: Boulder/rockhead Complete at 2.00m Remarks	
						Trial Pit stable No groundwater encountered Trial Pit backfilled upon completion	
•	· ·	•	· · ·		 		
					 s		gure No. 60-04-19.TP

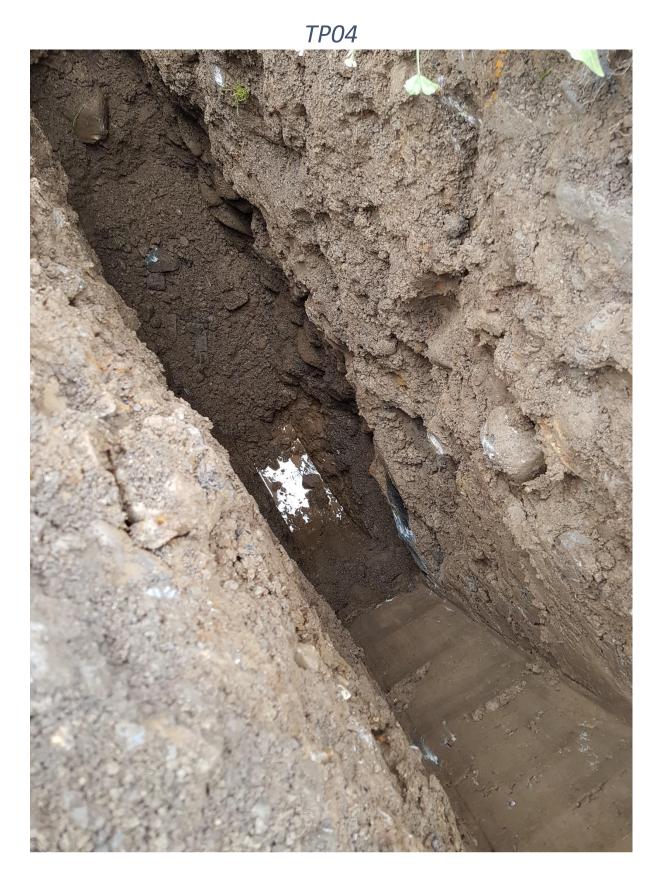
Machine : UCB 3CX Method : Trial P: Method : Trial P: Denomination P: Method : Trial P: Method : Trial P: Method : Trial P: Method : Trial P: Denomination P: Denominatio P: Denomination P: Denomination P: Denominati	AND	Grou	round Inve	estigations li www.gii.ie	reland	Ltd	Site Mill Road, Drogheda, Co.	Meath	Trial F Numb TP1
Description Description Description Description 00 B Image: Second			Dimensior	ns	Ground	Level (mOD)	Client		Job Numb 8660-04
50 B </th <th></th> <th></th> <th>Location</th> <th></th> <th>01</th> <th>1/05/2019- 2/05/2019</th> <th>-</th> <th></th> <th>Sheet 1/1</th>			Location		01	1/05/2019- 2/05/2019	-		Sheet 1/1
.50 B	epth m) S	Sample / Tests	ests Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legenc
Trial Pit stable No groundwater encountered Trial Pit backfilled upon completion	В					(0.40) 0.50 (1.60) 2.10	Soft to firm brown sandy s occasional subangular to s angular to subangular cob Limestone and lenses of b Obstruction: Boulder/roc Complete at 2.10m	ilightly gravelly CLAY with ma bles, some angular boulders rown fine to coarse Sand	
					. .		Trial Pit stable No groundwater encountere Trial Pit backfilled upon com	d pletion	
· · · · · · · · · · ·		· ·	· ·	 		· · ·			
					. .	s	scale (approx)	Logged By	Figure No.

RELAND	Grou	nd Inv	estigations www.gii.ie	Ireland	Ltd	Site Mill Road, Drogheda, Co. Meath	Trial Pi Numbe TP2(
Machine : Jo Method : To		Dimensio	ns	Ground	l Level (mOD)	Client	Job Numbe 8660-04-
		Location		Dates	1/05/2019- 2/05/2019	Engineer DBFL	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50	в				(0.10) (0.10) (1.70) (1.70) (0.30) (0.30) (0.30) (0.30) (0.30) (0.30)	Brown TOPSOIL Brown clayey gravelly fine SAND with many angular to subrounded cobbles, occasional subangular to subrounded boulders of Limestone Grey/brown angular to subrounded COBBLES of Limeston with some finer material (Hard digging) Obstruction: Boulder/rockhead Complete at 2.10m	
Plan .		·		•		Remarks Trial pit unstable below 0.10m BGL No groundwater encountered Trial pit backfilled upon completion	
		·			•••	I rial pit backfilled upon completion	
					•••		
•			· · ·			icale (approx) Logged By Fig	gure No.

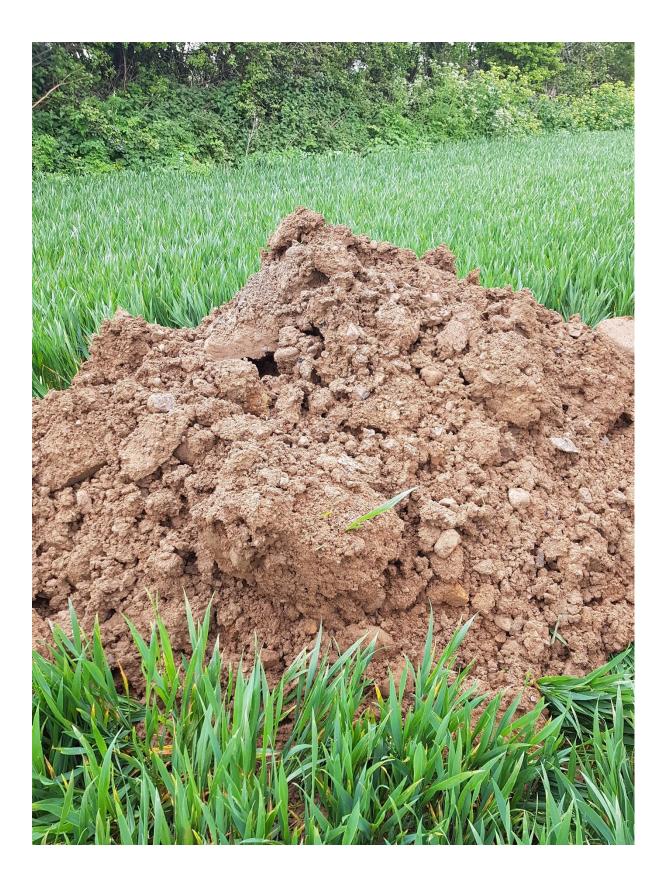
Ground Investigations Ireland Ltd						Site Mill Road, Drogheda, Co. Meath	Trial Pit Number TP21
Machine : JCB 3CX Method : Trial Pit		Dimensions Location		Ground	l Level (mOD)	Client Engineer DBFL	Job Number 8660-04-
				Dates 0 0	1/05/2019- 2/05/2019		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50	в				(0.30) (0.70) (0.70) (1.30) (1.30) (1.30)	Brown TOPSOIL Firm brown sandy slightly gravelly CLAY with occasional subangular cobbles Firm to stiff brown slightly sandy gravelly CLAY with many angular to subangular cobbles and lenses of grey fine to coarse Sand Obstruction: Boulder/rockhead Complete at 2.30m	
Plan .				-	•••	Remarks	
		·				No groundwater encountered Trial pit backfilled upon completion	
					· ·		
·		•		·	 s	icale (approx) Logged By Fig	gure No.

TP01

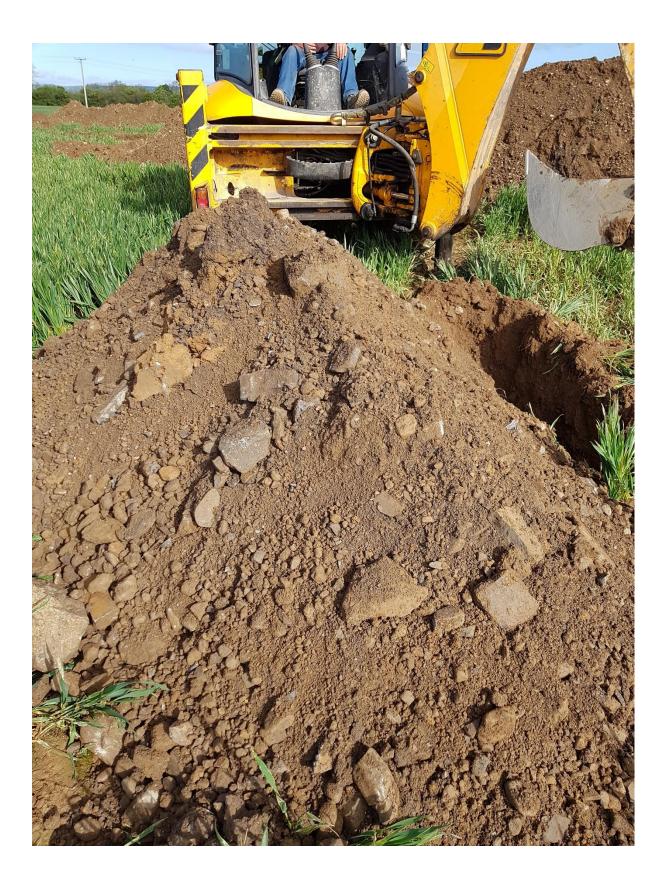


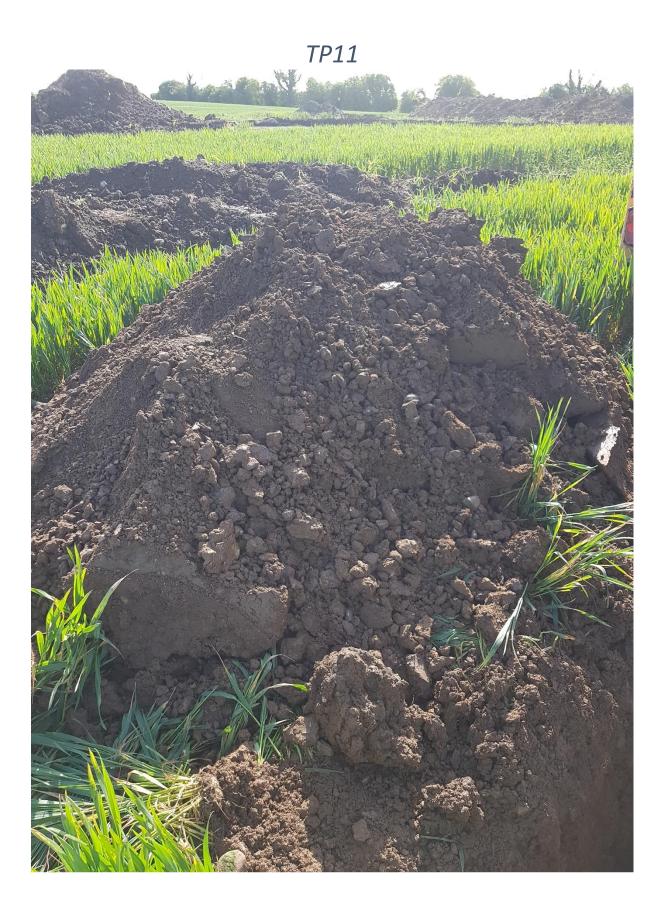




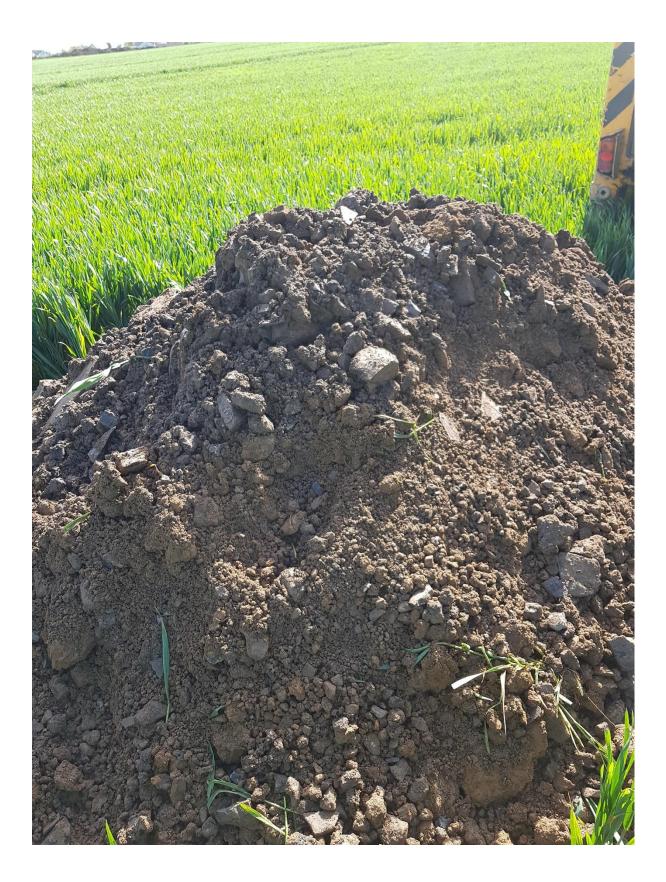


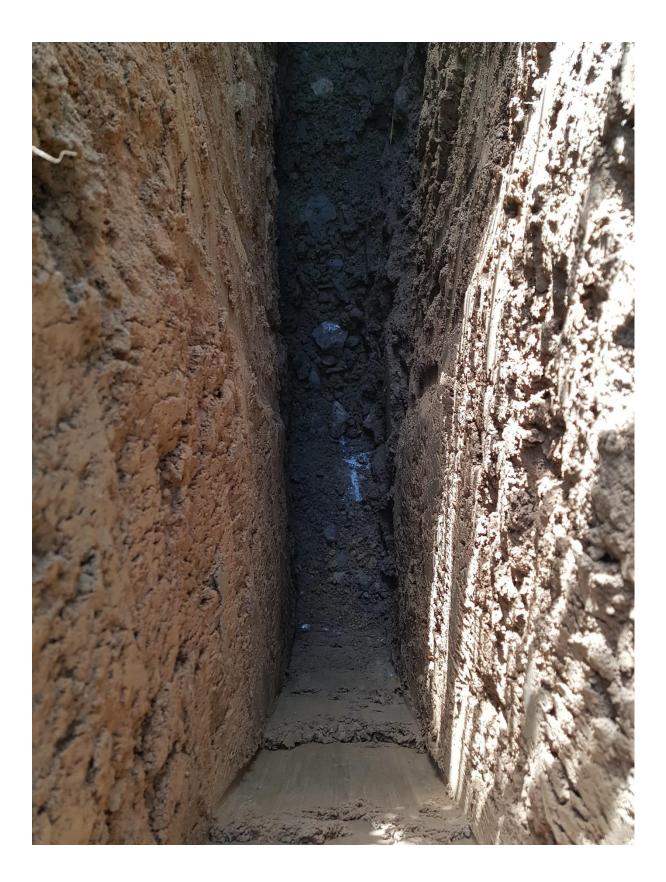
TP07

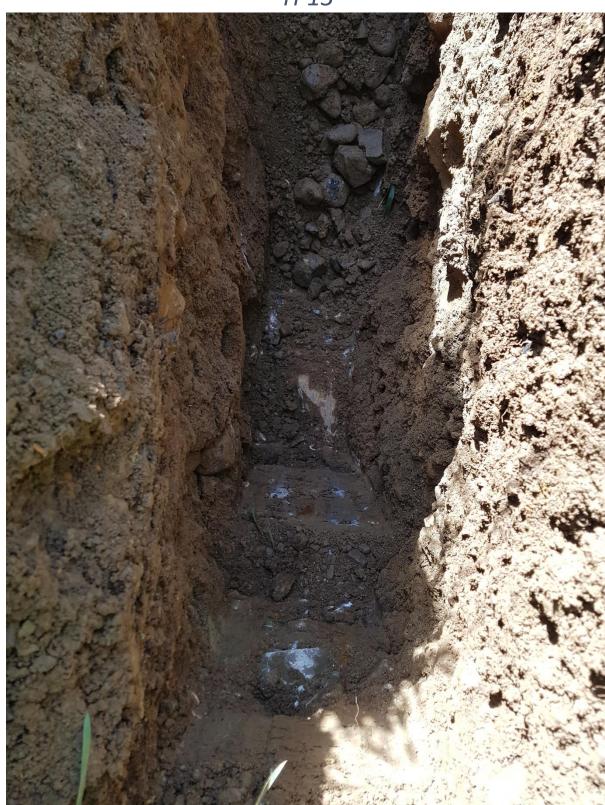


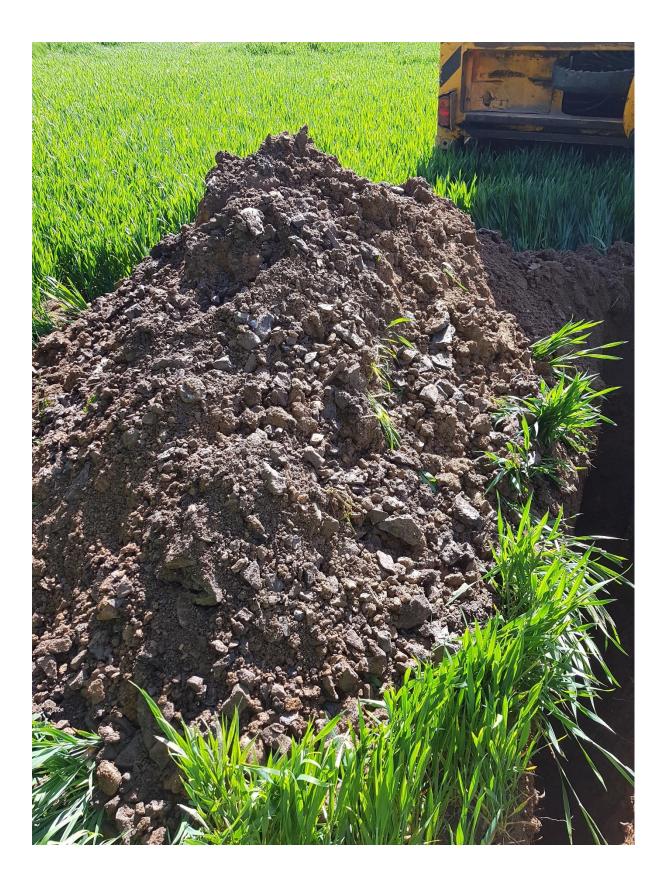




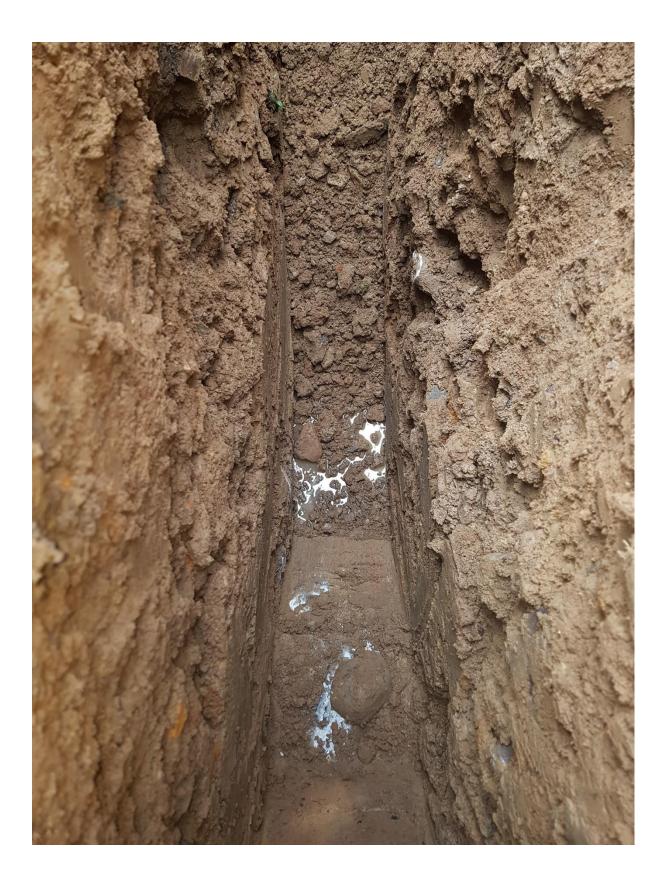


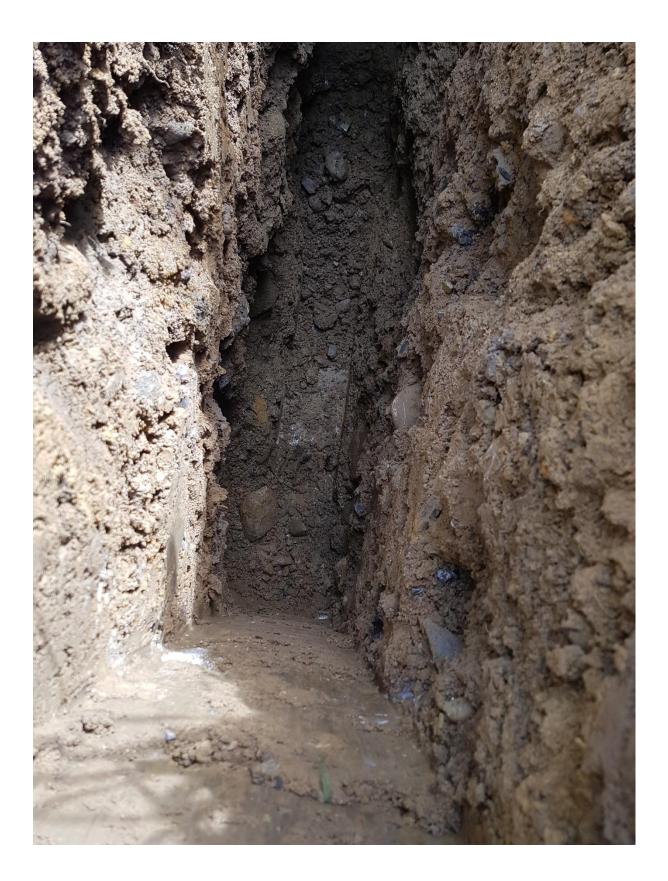




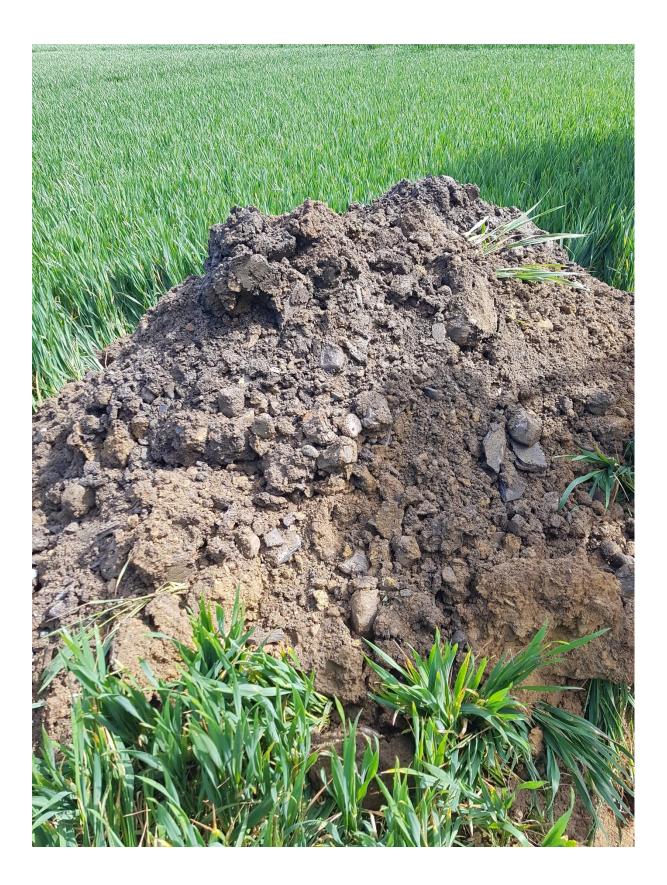


TP13

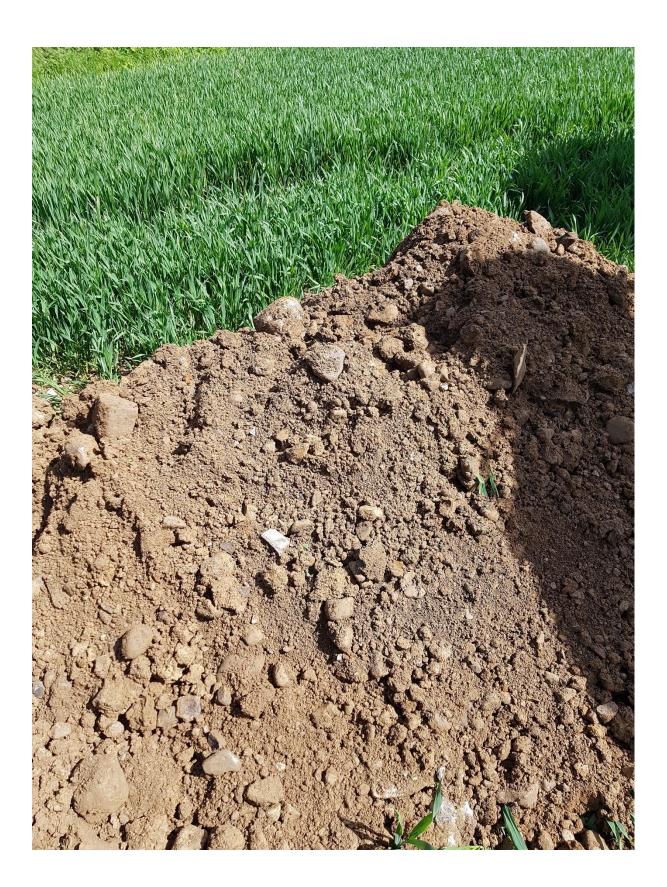


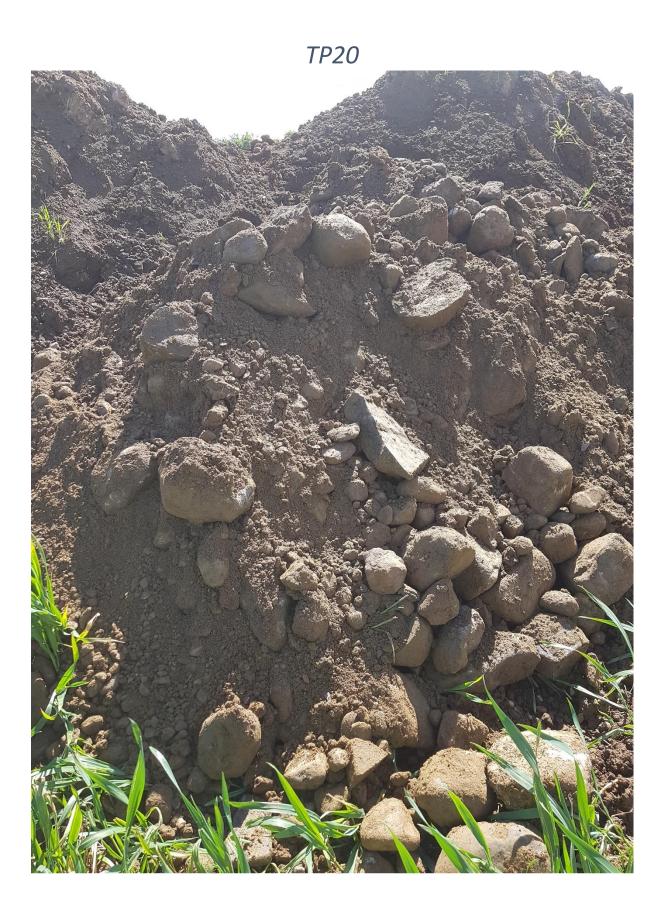


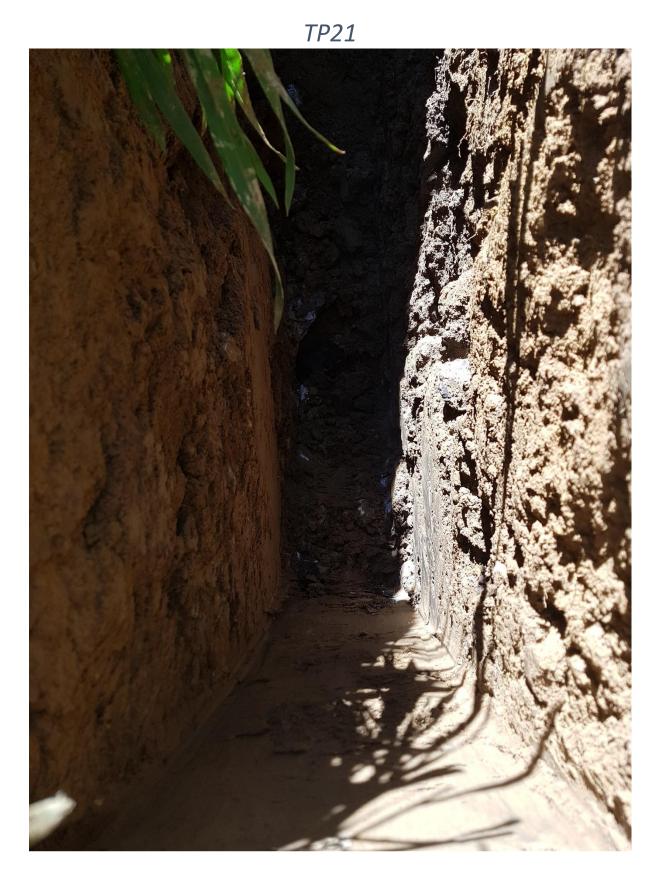












APPENDIX 3 – Cable Percussion Borehole Records

	Grou	nd In		gations Ire /w.gii.ie	land	Ltd	Site Mill Road, Drogheda, Co. Meath		Borehole Number BH01
Machine : Da	ando 2000	Casing	Diamete		Ground	Level (mOD)	Client		Job
Method : Ca	able Percussion	20	0mm cas	ed to 4.70m					Number 8660-04-19
		Locatio	n		Dates	100/0010	Engineer		Sheet
					04	1/06/2019	DBFL		1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Kater
0.50	В					(0.30)	Brown sandy TOPSOIL with rootlets Soft brown slightly sandy gravelly CLAY with occas subangular cobbles of limestone	sional	
1.00-1.45	SPT(C) N=7			1,1/2,1,2,2		(1.10)			* * * * * * * * * * * * * * * * * * *
1.00	B					1.40	Soft greyish brown sandy slightly gravelly CLAY wi occasional subangular cobbles of limestone	th	• <u>•</u> ••••••••••••••••••••••••••••••••••
2.00-2.45 2.00	SPT(C) N=6 B			1,0/1,2,2,1					0.000 0.0000 0.0000
3.00-3.45 3.00	SPT(C) N=5 B			1,0/0,1,2,2					2010 2010
4.00-4.45	SPT(C) N=18 B			1,2/2,4,6,6			Stiff greyish brown sandy gravelly CLAY with occas subangular cobbles of limestone Obstruction: Boulder/rockhead Complete at 4.70m	sional	
Remarks No groundwa	ater encountered	<u>,</u>	L		1	1		Scale (approx)	Logged By
Borehole bac Chiselling fro	ckfilled on completio om 4.70m to 4.70m f	n or 1 hour.						1:50	JD
							-	Figure N 8660-04	o. I-19.BH01

APPENDIX 4 - Rotary Borehole Records

Machine : Bo		Grou		WV	igations Ire vw.gii.ie			Site Mill Road, Drogheda, Co. Meath	Borehol Number RC01
	/ater			Diamete 0mm cas	ed to 7.70m	Ground	Level (mOD)		Job Number 8660-04-
Method : R		ł	Locatio	n		Dates 07	7/06/2019	Engineer DBFL	Sheet 1/1
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.00	27	-					(2.20)	Soft to firm dark brown slightly sandy slightly gravelly CLAY with occasional rootlets. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse	
2.20 2.20-2.65					1,1/2,1,2,1 SPT(C) N=6		2.20	Weak to medium strong dark grey fine grained fossilferous LIMESTONE with calcite veins interbedded with weak black very fine thinly laminated Mudstone. Partially weathered	
3.70	63	40	8	>25	_			2.20-3.70 - Very closely spaced sub-horizontal to 10 degrees, undulating rough	
5.70	100	85	0	>25				3.70-5.20 - Very closely spaced sub-horizontal to 10 degrees, undulating rough	
5.20	100	87	47	16			F	5.70-6.70 - Close to medium spaced sub-horizontal to 10 degrees, undulating rough	
6.70	90	69	0	>25				6.70-7.70 - Very closely spaced sub-horizontal to 10 degrees undulating rough	
7.70								Complete at 7.70m	
Remarks Borehole bac No groundwa	ckfilled upo ater encour	n comple	tion				<u>F</u>	Scale (approx	Logged By
-								1:50	MMC
								Figure	No. 04-19.RC01

		Grou	nd In		igations Ire vw.gii.ie	land	Ltd	Site Mill Road, Drogheda, Co. Meath	Borehole Number RC02
Machine : Bo Flush : W	/ater		Casing 10		er sed to 15.60m	Ground	Level (mOD)	Client	Job Number 8660-04-19
Core Dia: 68 Method : Re		d	Locatio	n		Dates 10)/06/2019	Engineer DBFL	Sheet 1/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Kater
0.00	67							Soft to firm brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse	
2.20 2.20-2.65	83				1,1/2,3,2,1 SPT(C) N=8			Firm grey slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse	
3.70 3.70-4.15	13				3,3/4,4,5,5 SPT(C) N=18		3.70	Poor Recovery: Recovery consists of grey angular cobbles. Driller notes Clay (Stiff)	
5.20 5.20-5.50	63				10,10/14,36 SPT(C) 50/150		5.20	Very stiff grey slightly sandy gravelly CLAY with subangular to subrounded cobbles. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse	281,000,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,000,000 10,000,0000,0
6.70 6.70-6.85	73				25/50 SPT(C) 25*/80 50/70				
8.20 8.20-8.43	40	7	7		12,19/50 SPT(C) 50/80				
9.70 9.70-9.85 Remarks				NI	25/50 50/70 SPT(C) 25*/80		9.70	Weak grey very fine grained fossiliferous LIMESTONE with rare calcite veins interbedded with weak black fine grained	
Borehole bad	ckfilled upo	on comple	tion					Scale (approx)	
								1:50 Figure 8660-0	MMC No. 4-19.RC02

Machine : B		Grou		WW	gations Ire /w.gii.ie			Site Mill Road, Drogheda, Co. Meath	Boreho Numbe RC02
lush :W	/ater			Diamete 0mm cas	r ed to 15.60m	Ground	Level (mOD)	Client	Job Numbe 8660-04-
core Dia: 68		ł	Locatio	'n		Dates 10	0/06/2019	Engineer DBFL	Sheet 2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
	43	0	0				(1.50)	thinly laminated Mudstone. Distinctly weathered 9.70-11.20 - Non Intact	
1.20	100	54	23	21				Weak to medium strong grey very fine grained fossiliferous LIMESTONE with rare calcite veins interbedded with weak black fine grained thinly laminated Mudstone. Partially weathered	
2.50 3.50	100	93	75	7				11.20-15.60 - Close to medium spaced sub-horizontal to 20 degrees, planar rough	
4.00				. 20				to zo degrees, planal rough	
4.50	100	50	22	17					
5.60								Complete at 15.60m	
Remarks							-	Scale (approx	Logged) By
								1:50	MMC
								Figure 8660-	No. 04-19.RC02

Machine : Bo		Grou			gations Ire vw.gii.ie r		Ltd Level (mOD)	Mill Road, Drogheda, Co. Meath	Number RC03
	/ater		-		ed to 9.10m				Number 8660-04-1
Core Dia: 68			Locatio	'n		Dates		Engineer	Sheet
Method : R	otary Corec	1					7/06/2019-)/06/2019	DBFL	1/1
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
).00	32	-					(3.70)	Soft to firm brown sandy gravelly CLAY with subangular to subrounded cobbles. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse	
2.20 2.20-2.65	73	-			1,1/2,2,3,1 SPT(C) N=8				
3.70	92	62	39	6			3.70	Medium strong grey very fine to fine grained fossilferous LIMESTONE with calcite veins interbedded with weak black very fine grained thinly laminated Mudstone, partially weathered with some clay smearing	
5.00								3.70-5.00 - Two fracture sets. F1: Medium spaced sub-horizontal to 15 degrees, undulating rough. F2: Widely spaced sub-vertical to 85 degrees, unudulating rough	
	93	79	68	4				5.00-6.00 - Medium spaced sub-horizontal to 15 degrees, undulating rough	
6.00									
5.40				19			(5.40)	6.00-7.00 - Two fracture sets. F1: Closely spaced sub-horizontal to 10 degrees, undulating rough. F2: Widely spaced sub-vertical to 80 degrees, undulating rough	
7.00	97	91	39	18				7.00-8.00 - Two fracture sets. F1: Closely spaced sub-horizontal to 10 degrees, undulating rough. F2: Widely spaced sub-vertical to 80 degrees, undulating rough	
3.00	100	59	20	>25			(5.40)	8.00-9.10 - Two fracture sets. F1: Closely spaced sub-horizontal to 10 degrees, undulating rough. F2: Widely spaced sub-vertical to 80 degrees, undulating rough	
9.10					-		9.10	Complete at 9.10m	
Remarks Borehole bad	ckfilled upo	n comple	tion					Scale (approx	Logged By
								1:50	MMC

Wachine : B		rou	nd In Casing	W	igations Ire vw.gii.ie ^w		Ltd Level (mOD)	Site Mill Road, Drogheda, Co. Meath Client	Number RC04 Job Number
	/ater		10	0mm cas	sed to 8.20m				8660-04-
Core Dia: 68		đ	Locatio	n		Dates 11	/06/2019	Engineer DBFL	Sheet 1/1
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.00	34	-					(2.20)	Soft to firm brown sandy gravelly CLAY with subangular to subrounded boulders. Sand is fine to coarse. Gravel is subangular to subrounded fine to coase	
.20 .20-2.65	36	-			2,2/4,5,6,6 SPT(C) N=21		(1.40)	Stiff brown sandy gravelly CLAY with subangular to subrounded boulders. Sand is fine to coarse. Gravel is subangular to subrounded fine to coase	
.60 .60-4.05	100	69	41	12	3,4/7,5,7,7 SPT(C) N=26		3.60	Medium strong grey very fine to fine grained fossiliferous LIMESTONE with calcite veins interbedded with weak black very fine grained thinly laminated Mudstone. Partially weathered with clay smearing 3.60-4.60 - Two fracture sets. F1: Closely spaced sub-horizontal to 10 degrees, undulating rough. F2: Widely spaced sub-vertical to 80 degrees, undulating rough 4.60-5.60 - Two fracture sets. F1: Closely spaced sub-horizontal to 10 degrees, undulating rough. F2:	
.20	93	43	27	15	_		-	 Widely spaced sub-vertical to 85 degrees, undulating rough 5.60-6.70 - Two fracture sets. F1: Closely spaced sub-horizontal to 30 degrees, undulating rough. F2: Widely spaced sub-vertical to 70 degrees, undulating rough 	
.70	93	77	44	20				6.70-8.20 - Closely spaced sub-horizontal to 40 degrees, undulating rough Complete at 8.20m	
Remarks lorehole ba	ckfilled upo	n comple	tion					Scale (approx) 1:50 Figure	MMC

Machine : Ta Flush :	44		Casing		vw.gii.ie ^r	Ground	Level (mOD)	Client			ob umber 30-04-1
Core Dia: n Method : R		d	Locatio	n		Dates 06	6/06/2019	Engineer DBFL		Sł	heet 1/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.00	32	-					(2.20)	Poor Recovery: Recovery consists of grey angular to subangular cobbles. Driller notes brown Clay	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
2.20 2.20-2.35	30	-			25/50 SPT(C) 25*/75 50/75			Poor Recovery: Recovery consists of grey angular to subangular cobbles with some clay smearing. Driller notes brown Clay (Stiff)			
3.60	43	3					(3.40)				
5.20					-				0°00 000 000	0	
5.60	77	9	0	NI			(1.10)	Weak grey fine grained fossiliferous LIMESTONE interbedded with weak black very fine grained thinly laminated Mudstone. Destructed weathering 5.60-6.70 - Non Intact			0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.70 7.80	100	47	30	>25	_		5.60 (1.10)	Medium strong grey very fine to fine grained fossiliferous LIMESTONE interbedded with weak black very fine grained thinly laminated Mudstone. Partially to distinctly weathered with clay smearing 6.70-7.80 - Non intact in places but pattern indicates two fracture sets. F1: Sub-horizontal to 10 degrees, undulating rough, stepped. F2: Sub-vertical to 80 degrees, undulating rough			2. 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
8.20				13				7.80-8.90 - Two fracture sets. F1: Closely spaced sub-horizontal to 10 degrees, undulating rough. F2: Widely spaced sub-vertical to 65 degrees, undulating rough		2	2023 800
8.90	100	53	43	15			(4.50)	8.90-9.70 - Two fracture sets. F1: Closely spaced sub-horizontal to 15 degrees, undulating rough. F2: Widely spaced sub-vertical to 75 degrees, undulating rough			
9.70 9.90				NI	-						
Remarks Slotted pipe	installed fro	om 8.00-1	00m BGI	_ with gra	avel surround. Plain p	pipe installe	ed from 1.00m	BGL to ground level with bentonite seal	Scale (approx)	Lc B	ogged y
								-	1:50 Figure N 8660-04	lo.	MMC

Boreh Numb RC0		Site Mill Road, Drogheda, Co. Meath	_td	and	gations Ire w.gii.ie	vesti ww	nd In	Grou	(GROUND
Job Numb 8660-04		Client	₋evel (mOD)	Ground		Diameter	Casing			Machine∶⊺4 Flush :
Sheet 2/2		Engineer DBFL	06/2019	Dates 06		n	Locatio	1		Core Dia: m Method : R
ater N	Legend	Description	Depth (m) (Thickness)	Level (mOD)	Field Records	FI	RQD	SCR	TCR	Depth (m)
		9.70-11.20 - Two fracture sets. F1: Closely spaced sub-horizontal to 15 degrees, undulating rough, stepped. F2: Widely spaced sub-vertical to 70 degrees, undulating rough				11	63	80	100	11.20
	Scale (approx)									Remarks
	1:50 Eiguro N	-								
lo. 4-19.RC(Figure N									

GROUND IRELAND Machine : Br		Grou	nd In _{Casing}	W١	igations Ire ww.gii.ie m		Ltd Level (mOD)	Site Mill Road, Drogheda, Co. Meath Client	Borehol Number RC06
Flush : W	/ater		-		sed to 6.20m		()		Number 8660-04-1
Core Dia: 68			Locatio	n		Dates		Engineer	Sheet
Method :R	otary Corec	1				11	1/06/2019	DBFL	1/1
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
).00	45							Poor Recovery: Recovery consists of soft to firm brown sandy gravelly Clay with angular to subrounded cobbles	
2.20 2.20-2.65	20				4,6/6,7,7,8 SPT(C) N=28			Poor Recovery: Recovery consists of very stiff brown sand gravelly CLAY with angular to subrounded cobbles and occasional angular to subangular boulders (Stiff)	y 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3.70 3.70-4.08	27				12,10/15,17,18 SPT(C) 50/225				
5.20 5.20-5.40	100				25/50 SPT(C) 50/50				6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.20								Complete at 6.20m	<u>, , , , , , , , , , , , , , , , , , , </u>
Remarks Borehole bad	ckfilled upo	n comole	tion					Scale (appro	e Logged x) By
JUIEIIUIE DA	ckilled upo	n comple	uUH						
								1:50 Eigur	MMC
								Figur 8660	e NO. -04-19.RC06

Machine : Be	ater		Casing 10	Diamete	ww.gii.ie er sed to 5.00m	Ground	Level (mOD)	Client	Job Number 8660-04-
Core Dia: 68		b	Locatio	n		Dates 11	/06/2019	Engineer DBFL	Sheet 1/1
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.00	77						(2.60)	Firm brown sandy gravelly CLAY with subangular to subrounded boulders. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse	အနံုတ် ၆ ခုနံုတ် ၆ ခုနံုတ် ၆ ခုနံုတ် ၆ ခုနှ ဒုရာတိုင်း ရေစာင်း ရောက် ၆ ခုနှစ် ၆ ခုနံုတ် ၆ ခု နံုတ် ၆ ခုနံုတ် ၆ ခုနံုတ် ၆ ခုနံုတ် ၆ ခုနံုတ် ၆ ခု
.20 .20-2.65	33				25/50 SPT(C) N=50		2.60	Poor Recovery: Driller notes stiff brown sandy gravelly CLAY with subangular to subrounded boulders. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse (Stiff)	
.70 .70-4.15	0				11,12/14,36 SPT(C) N=50		3.70	No Recovery: Driller notes brown sandy gravelly Clay (Stiff)	
5.00					10,12/14,36 SPT(C) 50/150			Complete at 5.00m	
Remarks Borehole bac	kfilled upc	n comple	tion				F	Scale (approx)	Logged By
								1:50	MMC
								Figure	No.

Machine : B		Grou		VESTI WW Diameter	gations Ire /w.gii.ie /		Level (mOD)	Mill Road, Drogheda, Co. Meath Client	Number RC08 Job Number
	/ater		10	0mm cas	ed to 5.00m				8660-04-
Core Dia: 68 Method : R		d	Locatio	n		Dates 12	2/06/2019	Engineer DBFL	Sheet 1/1
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.00	45							Soft to firm brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to coarse	
2.00							(0.50)	OVERBURDEN: Stiff brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to coarse Weak dark grey very fine to fine grained fossiliferous	
				13				LIMESTONĚ with cálcite veins interbedded with weak black very fine grained thinly laminated Mudstone. Destructed weathering with clay smearing	
3.00	81	24	24	6			(3.00)	2.00-4.00 - Two fracture sets. F1: Medium spaced sub-horizontal to 15 degrees, undulating rough. F2: Widely spaced sub-vertical to 80 degrees, undulating rough	
4.00	75	0	0	NI				4.00-5.00 - Non Intact	
5.00								Complete at 5.00m	
Remarks Borehole bad	ckfilled upc	on comple	tion					Scale (approx)	Logge By
								1:50	ММС
								Figure	

Wachine : Be		rou	Casing	W	igations Ire vw.gii.ie _r		LIO Level (mOD)	Mill Road, Drogheda, Co. Meath Client	Number RC09 Job
lush : W	ater				sed to 5.20m				Numbe 8660-04-
Core Dia: 68		d	Locatio	n		Dates 12	2/06/2019	Engineer DBFL	Sheet 1/1
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.00	55	-					(0.90)	Soft to firm brown slightly sandy gravelly silty CLAY with occasional subangular to subrounded cobbles. Sand is fine to coarse. Gravel is angular to subangular fine to coarse Soft to firm brown slightly sandy gravelly silty CLAY with occasional subangular to subrounded cobbles. Sand is fine to coarse. Gravel is angular to subangular fine to coarse	ୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄ ୄୄୄୄୄୄୄୄୄ
.20 .20-2.64					5,6/6,7,10,27 SPT(C) 50/290				0.0.0 0.00 0.00 0.00 0.00 0.00 0.00
2.70	66	15	11				2.70	Weak dark grey very fine to fine grained fossiliferous LIMESTONE with calcite veins interbedded with weak black very fine grained thinly laminated Mudstone. Distinctly weathered with clay smearing	
.70	100	24	13	NI			(2.50)	2.70-5.20 - Non Intact	
5.20								Complete at 5.20m	
Remarks Borehole bac	kfilled upo	n comple	tion					Scale (approx)	Logge By
								1:50 Figure	MMC No. 4-19.RC09

20 20-2.65		-	RQD	FI	Field Records	Level (mOD)	3/06/2019 Depth (m) (Thickness) (1.00) (1.00) (1.00)	Engineer DBFL Description Soft to firm brown slightly sandy gravelly silty CLAY with occasional subangular to subrounded cobbles. Sand is fine to coarse. Gravel is angular to subangular fine to coarse	Sheet 1/1 Legend
20 20-2.65	36		RQD	FI	Field Records			Soft to firm brown slightly sandy gravelly silty CLAY with occasional subangular to subrounded cobbles. Sand is fine	0 <u>.0 .0</u> 0 <u>.0 .0</u> 0 <u>.0 .0</u> 0 <u>.0 .0</u> 0 <u>.0 .0</u> 0 <u>.0 .0</u> 0 .0 .0 0 .0 .0 .0 .0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
20 20-2.65 70 70-3.70		-					(1.00)	occasional subangular to subrounded cobbles. Sand is fine	0.0.0 0.0.0 0.0.0 0.0.0
70 70-3.70	23	_						Stiff brown slightly sandy gravelly silty CLAY with occasional subangular to subrounded cobbles. Sand is fine to coarse. Gravel is angular to subangular fine to coarse	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70-3.70					4,4/5,8,9,8 SPT(C) N=30		(1.00) 1.00 (2.70) (1.30) (1.30)		
00	92	45	15	15	25/50 SPT(C)		3.70 (1.30)	Weak to medium strong dark grey very fine to fine grained fossiliferous LIMESTONE interbedded with weak black very fine grained thinly laminated Mudstone. Partially weathered with clay smearing 3.70-5.00 - Two fracture sets. F1: Closely spaced sub-horizontal to 40 degrees, undulating rough. F2: Widely spaced sub-vertical to 85 degrees, undulating rough	
								Complete at 5.00m	
Remarks orehole backfille	led upon	n complet	tion		,			Scale (approx)	Logge By
								1:50	MMC

WWW.gli.ie Machine : Beretta T44 Casing Diameter Flush : Water 100mm cased to 5.00m						Ground	Level (mOD)	Mill Road, Drogheda, Co. Meath Client	RC11 Job Number 8660-04-1	
Core Dia: 68 mm Aethod : Rotary Cored					Dates 13	3/06/2019	Engineer DBFL	Sheet 1/1		
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
0.00	43						(1.00)	Soft to firm brown slightly sandy gravelly silty CLAY with occasional angular to subrounded cobbles. Sand is fine to coarse. Gravel is angular to angular fine to coarse Firm to stiff brown slightly sandy gravelly silty CLAY with occasional angular to subrounded cobbles. Sand is fine to coarse. Gravel is angular to angular fine to coarse		
.20 .20-2.65	44				4,4/5,8,9,8 SPT(C) N=30			Stiff brown slightly sandy gravelly silty CLAY with occasional angular to subrounded cobbles. Sand is fine to coarse. Gravel is angular to subangular fine to coarse		
.70 .70-3.85	46				25/50 SPT(C) 25*/75 50/75			Stiff grey slightly sandy gravelly silty CLAY with occasional angular to subrounded cobbles. Sand is fine to coarse. Gravel is angular to subangular fine to coarse		
5.00								Complete at 5.00m		
Remarks orehole bad	ckfilled upc	on comple	tion					Scale (approx)		
								1:50 Figure 8660-(MMC No. 04-19.RC1	

	mm	Flush : Water 100mm cased to 5.00m					Level (mOD)	Client	Job Number 8660-04-1
	Core Dia: 68 mm Location Method : Rotary Cored I		Dates 13	3/06/2019	Engineer DBFL				
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
00	36	-					(2.20) (2.20) (1.50) (1.50) (1.30)	Poor Recovery: Driller notes soft to firm brown slightly sandy gravelly silty CLAY with subangular to subrounded cobbles and boulders. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	
20 20-2.35	100	33	17	NI	- 25/50 SPT(C) 25*/75 50/75			Weak dark grey very fine to fine grained fossiliferous LIMESTONE with calcite veins. Destructed weathering with brown gravelly clay bands 2.20-3.70 - Non Intact	
70	77	54	50	8			(1.30)	Weak to medium strong very fine to fine grained fossiliferous LIMESTONE with calcite veins interbedded with weak black very fine laminated Mudstone. Partially weathered with black mud smearing 3.70-5.00 - Two fracture sets. F1: Close to medium spaced sub-horizontal to 20 degrees, undulating rough. F2: Widely spaced sub-vertical to 80 degrees, undulating rough	
00								Complete at 5.00m	
lemarks prehole bac	kfilled upo	n comple	tion		,			Scale (approx) Logge By
								1:50	ММС

Open- CR SCR ROD FI Field Records Integers Description Legens 30 4.3 A	Flush : Water 100mm cased to 5.20m				er	Ground	Level (mOD)	Client		
20 43 43 43 43 43 43 43 43 43 43 44 54<			Dates 13	8/06/2019	-					
A3 A43 A44 A	Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
ternarks remarks re	.00	43							Soft to firm brown sandy gravelly CLAY with occasional subangular to subrounded and cobbles. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse	
ternarks remarks re	.20 .20-2.58	100						2.00	Very stif brown sandy gravelly CLAY with subangular to subrounded and boulders. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse	0 0 0 0 0 0 0 0 0 0 0 0 0 0
ternarks remarks re	.35	73	32	30	12			3.35	fossiliferous LIMESTONE with calcite veins interbedded with weak black very fine laminated Mudstone. Partially to distinctly weathering with clay smearing 3.35-5.00 - Two fracture sets. F1: Close to medium spaced sub-horizontal to 20 degrees, undulating rough. F2: Widely spaced sub-vertical to 80 degrees,	
Atemarks orehole backfilled upon completion Scale (approx) By	.20								Complete at 5.20m	
1:50 MMC	Remarks orehole bac	kfilled upo	n comple	tion		1		<u> </u>	Scale (approx) Logged By
									1:50	ММС

Mill Road, Drogheda Rotary Core Photos

RC01

RC01

RC02

RC02

		R	C02			
Cop BHS BOJ		GROUND INVESTIGATIONS IRELAND		Grey Scale #14		-
19 35	Client:	KDBFL Buck	Job Ref:	. 8060-04-1	9.9	
	Site:	DROGHED'A PORT - COLPE EAST	Date:	10-06-19		
	Borehole	ref: RCO2	Depth: From	13.20 to	15 60	6 M.
E.	Box No:	4 of 4				
Cn	n 10	20 30 40	50 60	70 80	90 100	1
				00.00	14.00	
			- Internet	in sector being the sector	A THE W	
45	Change and a local division of the			Tank	Charles Con 200	
		C. T. P. M. U.L.	Witness Harrison	No. Steller Mar. Ste		ha .
9	2011 S				1560	
Comment of Street		and the second				8 5
		The Mar				I
		MARCON AND A	The Determine	· Reference		

APPENDIX 5 – Plate Test Results

Applied Load	Gauge settlement
0	0.000
34.5	-7.73
69	-13.05
138	-16.55
0	-11.95
69	-15.74
138	-16.92
0	-13

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

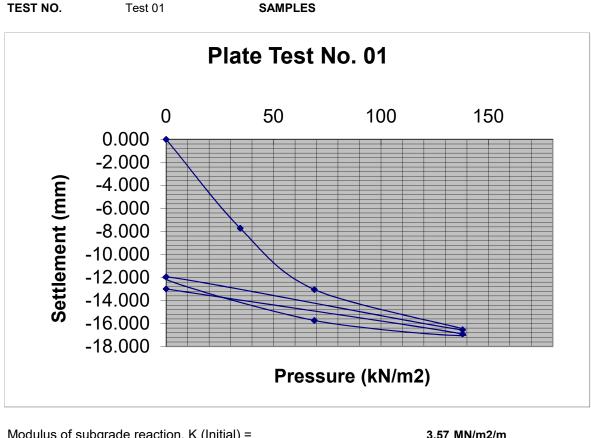

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL

DEPTH

Modulus of subgrade reaction, K (Initial) –	3.57 WIN/11//11	
Modulus of subgrade reaction, K (Reload) =	12.30 MN/m2/m	
Equivalent CBR(initial)in accordance with HD25/94 volu	me7 section2 = 0.09 %	
Equivalent CBR(reload)in accordance with HD25/94 volu	ume7 section2 = 0.75 %	

Applied Load	Gauge settlement
0	0.000
34.5	-3.84
69	-6.06
138	-12.4
0	-8.67
69	-10.67
138	-12.96
0	-9.01

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

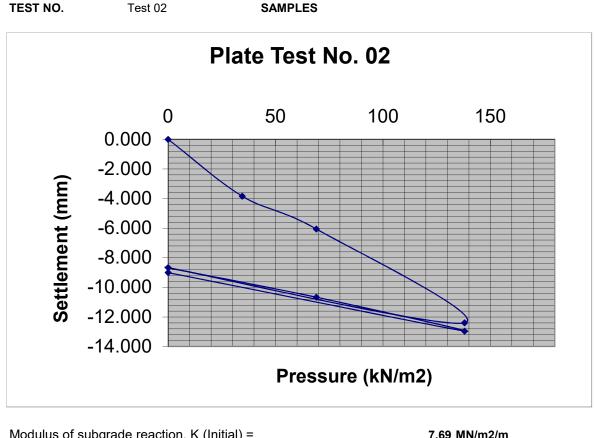

CONTRACT NO.

PLATE DIAMETER

Dark brown slightly sandy slightly gravelly CLAY.

0.30m

MATERIAL

DEPTH

Modulus of subgrade reaction, K (initial) –	7.69	ww/mz/m
Modulus of subgrade reaction, K (Reload) =	23.31	MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	=	0.33 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	=	2.26 %

Applied Load	Gauge settlement
0	0.000
34.5	-2.65
69	-5.22
138	-8.76
0	-5.59
69	-7.89
138	-10
0	-6.44

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

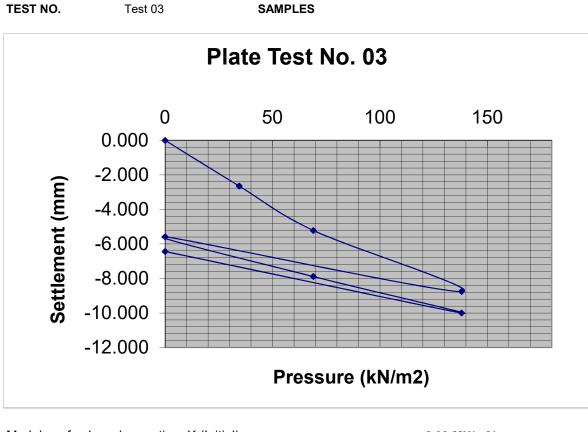

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY with occasional cobbles.

0.30m

MATERIAL

DEPTH

Modulus of subgrade reaction, K (Initial) =	8.93 MN/m2/m	
Modulus of subgrade reaction, K (Reload) =	20.27 MN/m2/m	
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	= 0.43 %	
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	2 = 1.77 %	

Applied Load	Gauge settlement
0	0.000
34.5	-1.68
69	-3.48
138	-5.79
0	-3.18
69	-4.93
138	-6.01
0	-3.08

8660-04-19

DBFL

457mm

Test 05

01-03/05/2019

LOCATION

DATE

CLIENT

TEST NO.

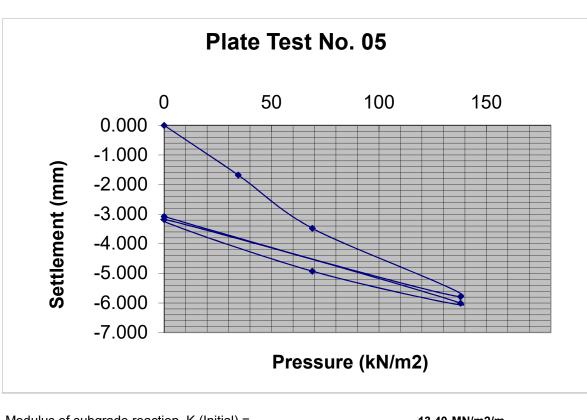

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL

DEPTH

NOTES SAMPLES

Modulus of subgrade reaction, K (Initial) =	13.40 MN/m	2/m
Modulus of subgrade reaction, K (Reload) =	26.64 MN/m	2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	=	0.87 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	2 =	2.85 %

Applied Load	Gauge settlement
0	0.000
34.5	-3.6
69	-6.89
138	-13.36
0	-10.42
69	-12.74
138	-15.29
0	-11.54

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

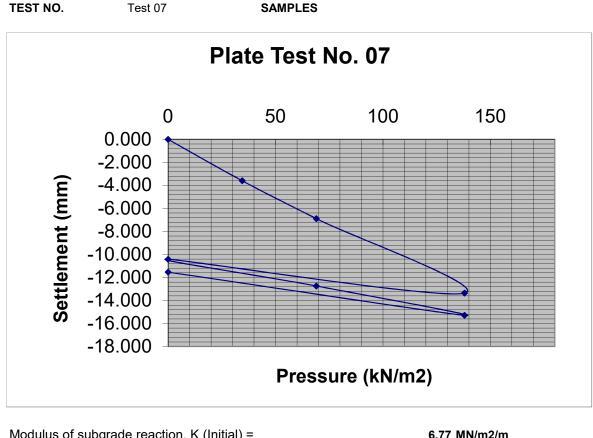

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL

DEPTH

wodulus of subgrade reaction,	r (muar) –	6.77	ww/mz/m
Modulus of subgrade reaction,	K (Reload) =	20.10	MN/m2/m
Equivalent CBR(initial)in accor	dance with HD25/94 volume7 s	ection2 =	0.27 %
Equivalent CBR(reload)in acco	ordance with HD25/94 volume7	section2 =	1.75 %

Applied Load	Gauge settlement
0	0.000
34.5	-4.27
69	-8.03
138	-12.64
0	-9.53
69	-12.42
138	-15.55
0	-10.49

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

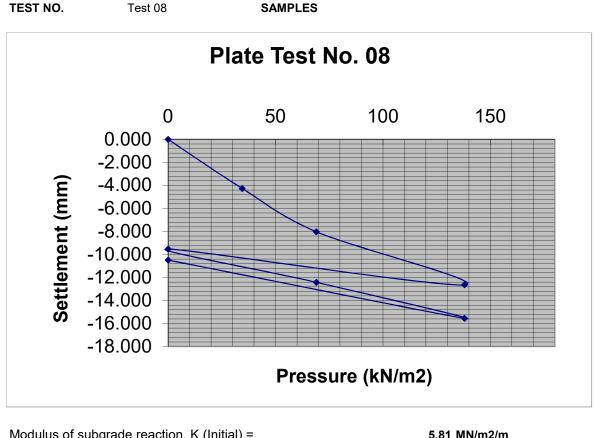

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL

DEPTH

	5.01 WIN/11/2/11
Modulus of subgrade reaction, K (Reload) =	16.13 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	= 0.20 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	2 = 1.19 %

Applied Load	Gauge settlement
0	0.000
34.5	-1.29
69	-5.27
138	-11.72
0	-8.23
69	-10.97
138	-13.59
0	-9.98

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

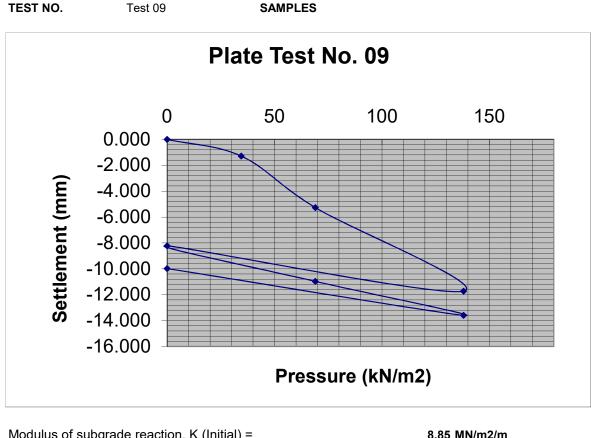
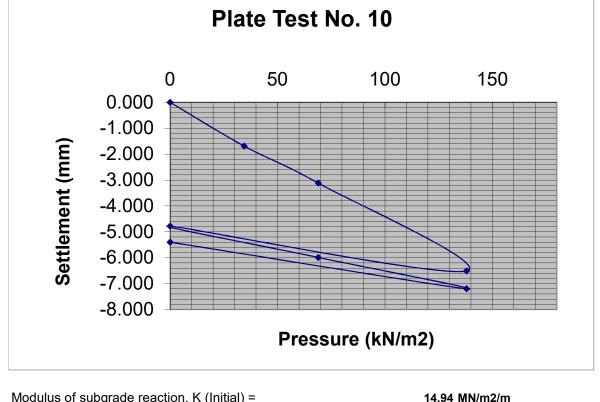

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL


DEPTH

Modulus of subgrade reaction, K (mitiar) –	8.85 WIN/M2/M
Modulus of subgrade reaction, K (Reload) =	17.02 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 see	ction2 = 0.42 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 se	ection2 = 1.31 %

Applied Load	Gauge settlement
0	0.000
34.5	-1.69
69	-3.12
138	-6.51
0	-4.78
69	-5.99
138	-7.2
0	-5.4

LOCATION CONTRACT NO. DATE	Mill Road, Drogheda 8660-04-19 01-03/05/2019	MATERIAL		Stripped
CLIENT PLATE DIAMETER TEST NO.	DBFL 457mm Test 10	DEPTH NOTES SAMPLES	0.30m	

Modulus of subgrade reaction, K (Reload) =	38.53 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 =	= 1.05 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	= 5.40 %

Applied Load	Gauge settlement
0	0.000
34.5	-2.61
69	-5.3
138	-8.78
0	-5.9
69	-7.91
138	-9.27
0	-6.26

8660-04-19

DBFL

457mm

Test 11

01-03/05/2019

LOCATION

DATE

CLIENT

TEST NO.

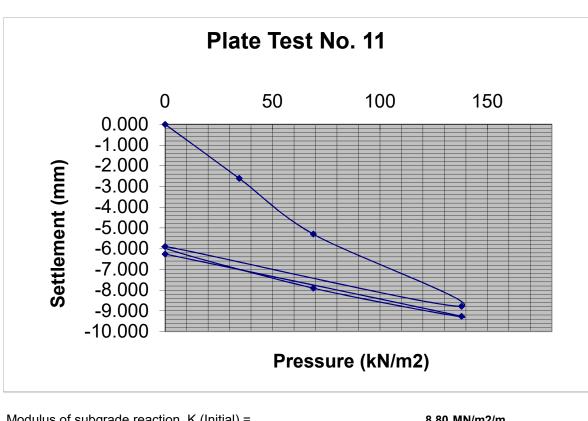

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.20m

MATERIAL

DEPTH

NOTES

SAMPLES

Modulus of subgrade reaction, K (Initial) =	8.80 MN/m	i2/m
Modulus of subgrade reaction, K (Reload) =	23.20 MN/m	2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	=	0.42 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	2 =	2.24 %

Applied Load	Gauge settlement
0	0.000
34.5	-3.62
69	-8.24
138	-20.09
0	-16.38
69	-19.01
138	-23.18
0	-19.34

8660-04-19

DBFL

457mm

Test 12

01-03/05/2019

LOCATION

DATE

CLIENT

TEST NO.

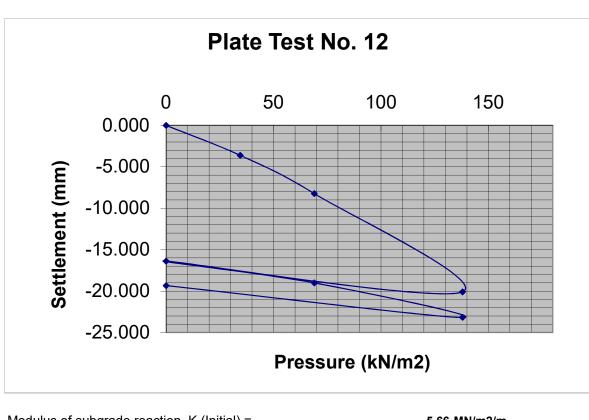

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.20m

MATERIAL

DEPTH

NOTES SAMPLES

Modulus of subgrade reaction, K (Initial) =	5.66 MN/m2/m
Modulus of subgrade reaction, K (Reload) =	17.73 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 vo	olume7 section2 = 0.19 %
Equivalent CBR(reload)in accordance with HD25/94 v	volume7 section2 = 1.41 %

Applied Load	Gauge settlement
0	0.000
34.5	-6
69	-10.27
138	-14.14
0	-11.7
69	-13.6
138	-15.06
0	-12.31

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

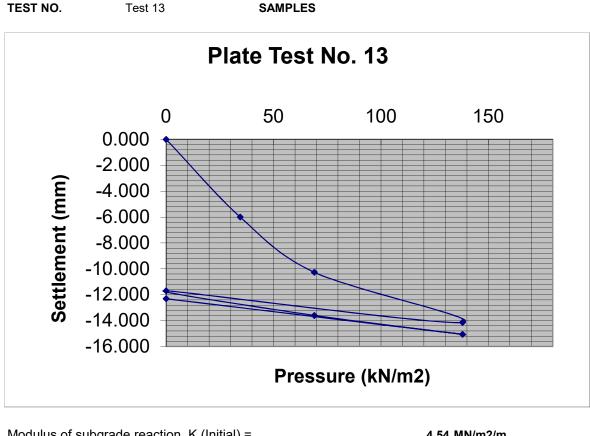

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL

DEPTH

Modulus of subgrade reaction, K (Initial) =	4.54 MN	/m2/m
Modulus of subgrade reaction, K (Reload) =	24.54 MN	/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section	on2 =	0.13 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 sect	tion2 =	2.47 %

Applied Load	Gauge settlement
0	0.000
34.5	-5.83
69	-9.17
138	-16.46
0	-12.95
69	-15.59
138	-19.14
0	-15.21

8660-04-19

DBFL

457mm

Test 14

01-03/05/2019

LOCATION

DATE

CLIENT

TEST NO.

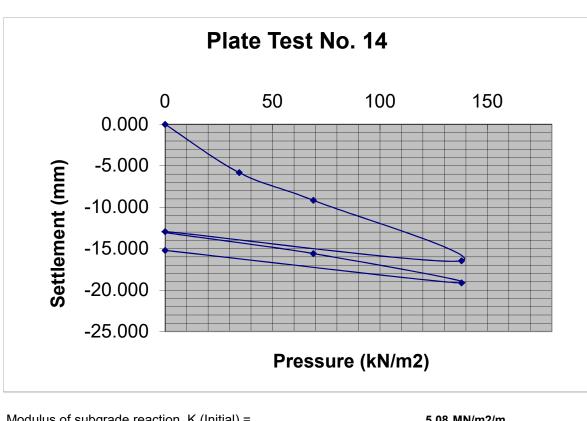

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL

DEPTH

NOTES SAMPLES

Modulus of subgrade reaction, K (Initial) =	5.08 MN/m2/m	
Modulus of subgrade reaction, K (Reload) =	17.66 MN/m2/m	
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	= 0.16	5 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	2 = 1.40)%

Applied Load	Gauge settlement				
0	0.000				
34.5	-2.62				
69	-5.33				
138	-8.99				
0	-6.04				
69	-8.09				
138	-9.51				
0	-6.32				

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

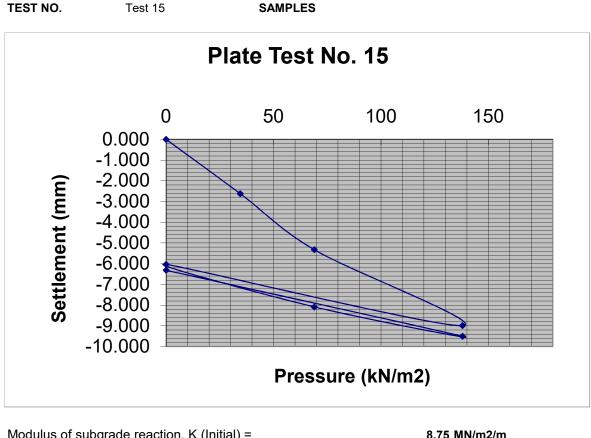

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL

DEPTH

Modulus of subgrade reaction, K (Initial) –	0./5 WIN/	mz/m
Modulus of subgrade reaction, K (Reload) =	22.74 MN/	′m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section	on2 =	0.41 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 sectors	tion2 =	2.17 %

Applied Load	Gauge settlement
0	0.000
34.5	-1.42
69	-2.87
138	-6.41
0	-4.64
69	-5.88
138	-7.09
0	-5.26

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

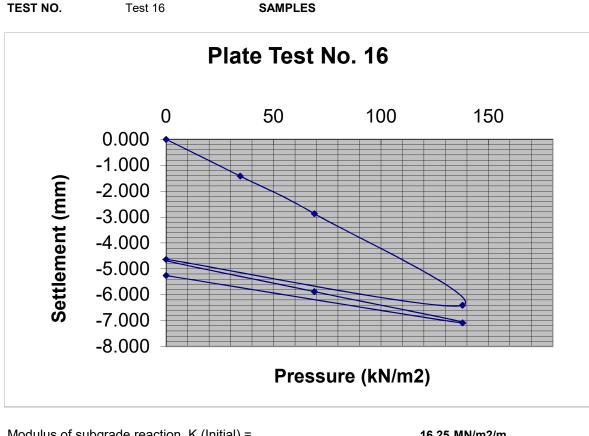

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL

DEPTH

Modulus	of subgrade reaction, K (Initial) =	16.25 MN/n	n2/m
Modulus	of subgrade reaction, K (Reload) =	37.60 MN/r	n2/m
Equivaler	nt CBR(initial)in accordance with HD25/94 volume7	section2 =	1.21 %
Equivaler	nt CBR(reload)in accordance with HD25/94 volume7	section2 =	5.18 %

Applied Load	Gauge settlement
0	0.000
34.5	-2.32
69	-4.72
138	-7.58
0	-3.9
69	-5.55
138	-6.16
0	-4.06

8660-04-19

DBFL

457mm

Test 17

01-03/05/2019

LOCATION

DATE

CLIENT

TEST NO.

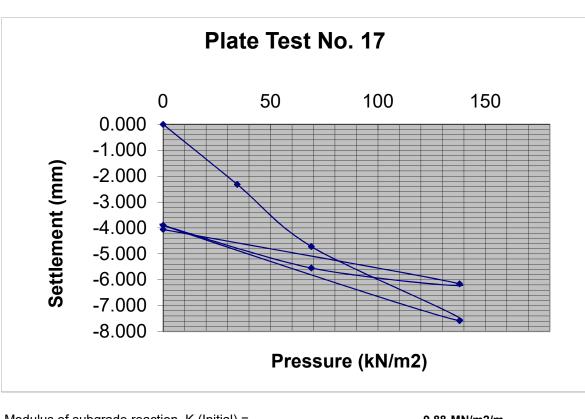

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL

DEPTH

NOTES SAMPLES

Modulus of subgrade reaction, K (Initial) =	9.88 MN/m2/m	
Modulus of subgrade reaction, K (Reload) =	28.26 MN/m2/m	
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	= 0.51 %	
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	2 = 3.16 %	

Applied Load	Gauge settlement
0	0.000
34.5	-1.86
69	-3.8
138	-7.75
0	-4.99
69	-6.7
138	-8.11
0	-5.57

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

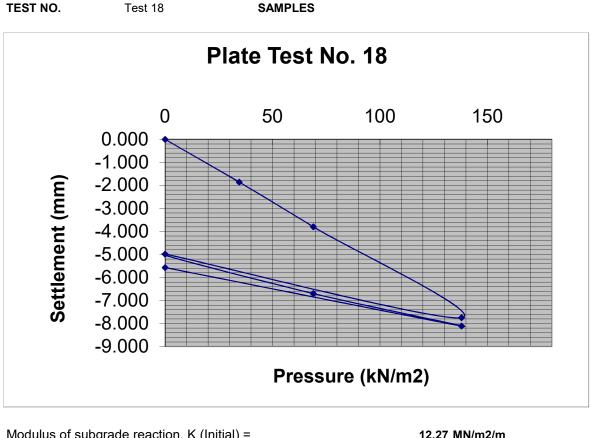

CONTRACT NO.

PLATE DIAMETER

Brown slightly sandy slightly gravelly CLAY

0.30m

MATERIAL

DEPTH

Modulus of subgrade feaction, K (initial) –	12.27 WIN/M2/M	
Modulus of subgrade reaction, K (Reload) =	27.27 MN/m2/m	
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	= 0.74 %	
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	2 = 2.97 %	

Applied Load	Gauge settlement				
0	0.000				
34.5	-3.37				
69	-8.34				
138	-16.42				
0	-12.63				
69	-15.5				
138	-18.94				
0	-14.37				

8660-04-19

DBFL

457mm

01-03/05/2019

LOCATION

DATE

CLIENT

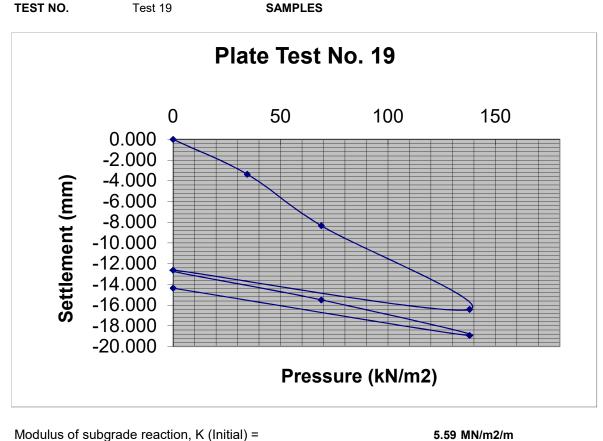

CONTRACT NO.

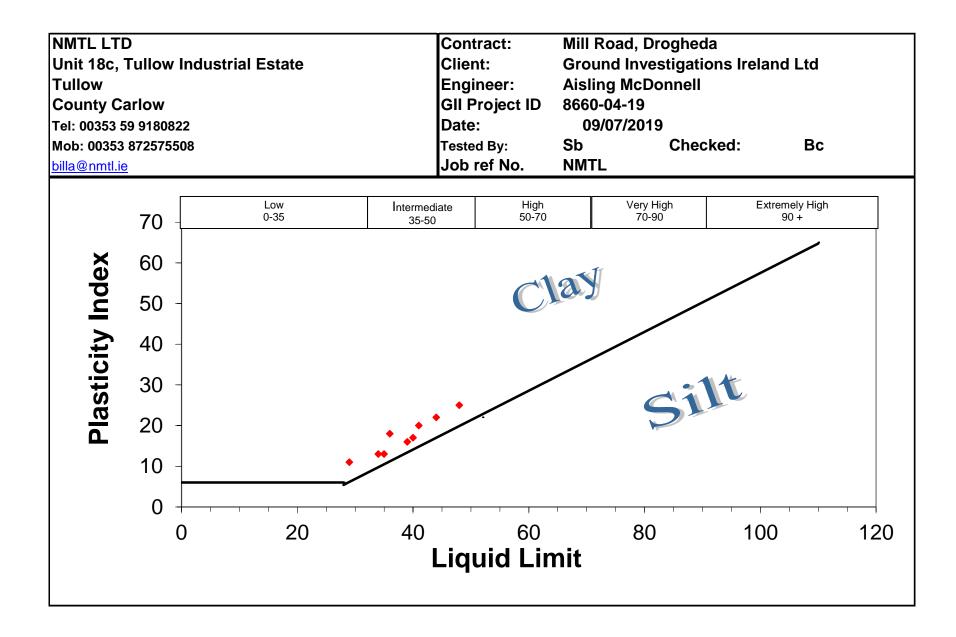
PLATE DIAMETER

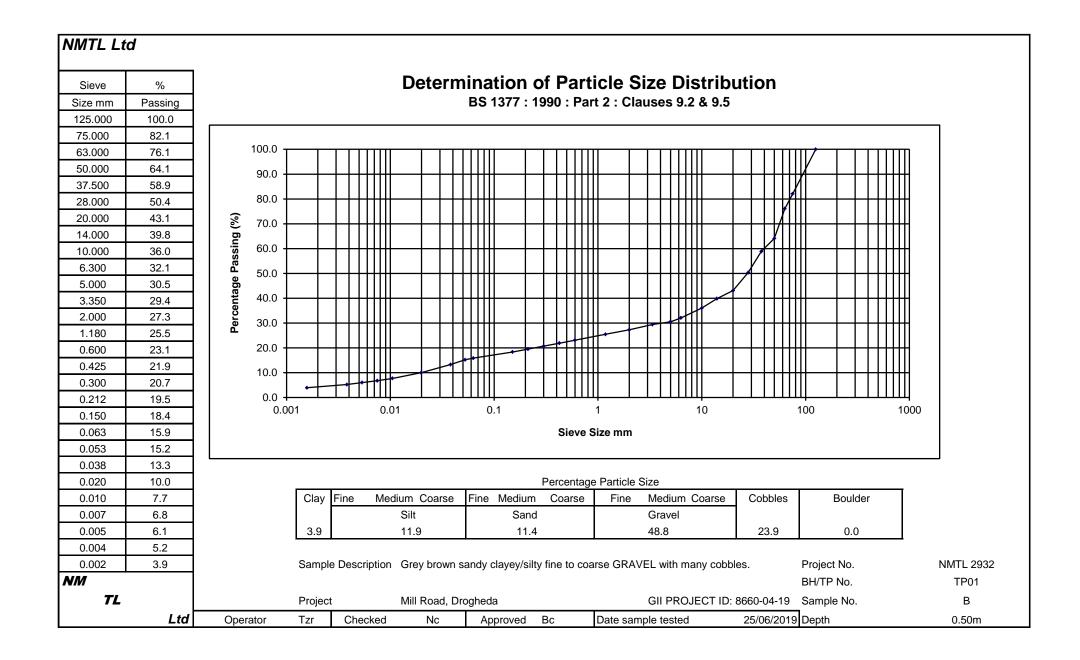
Brown slightly sandy slightly gravelly CLAY

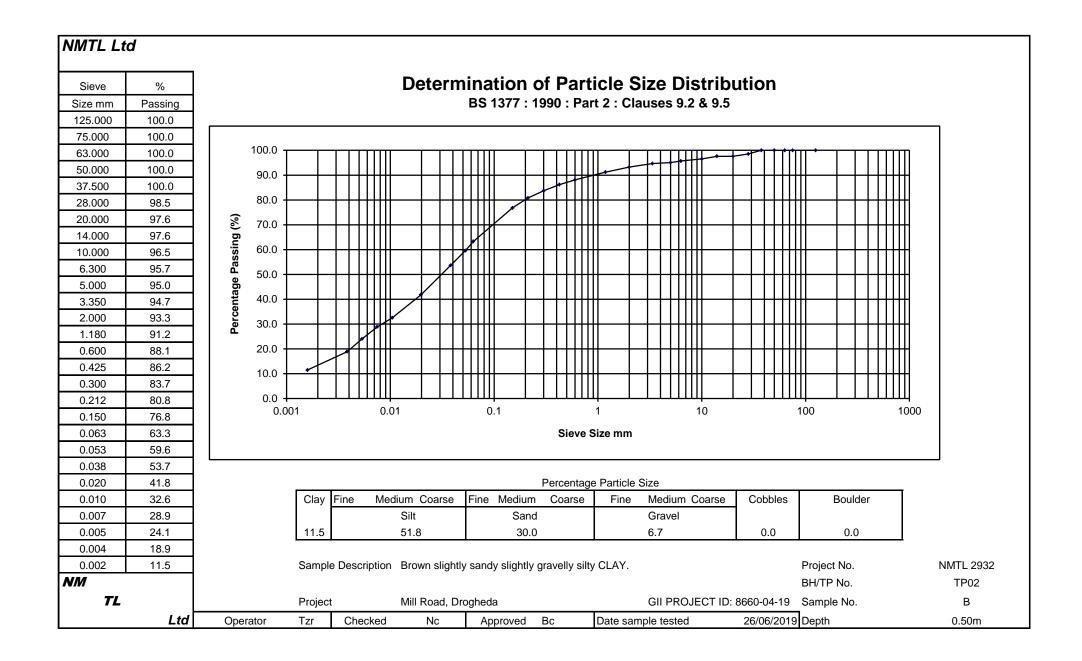
0.30m

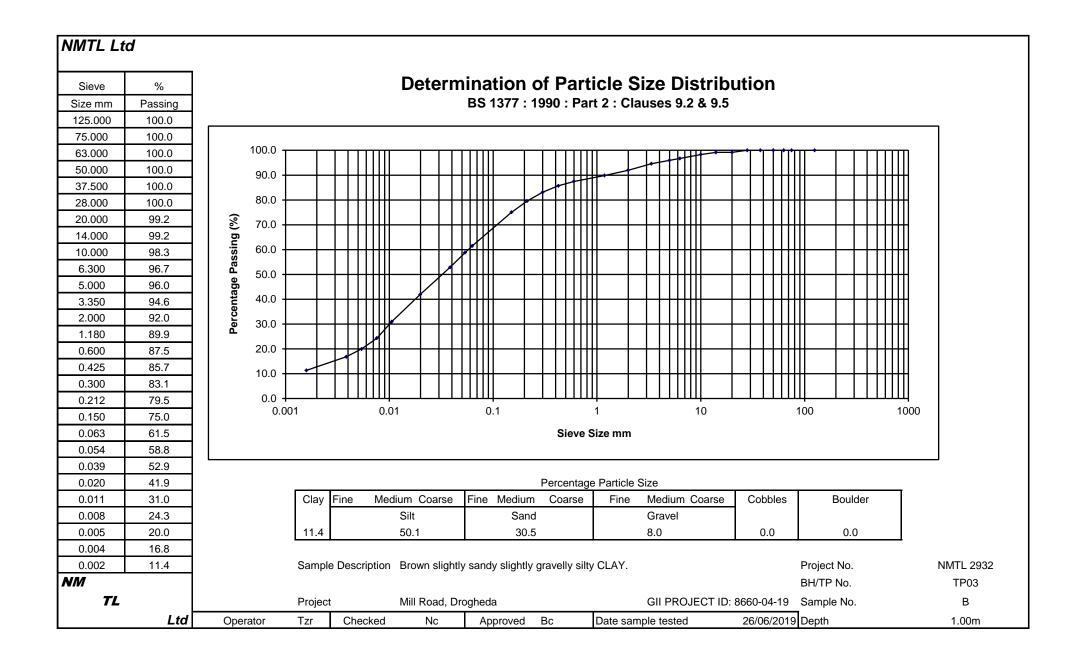
MATERIAL

DEPTH

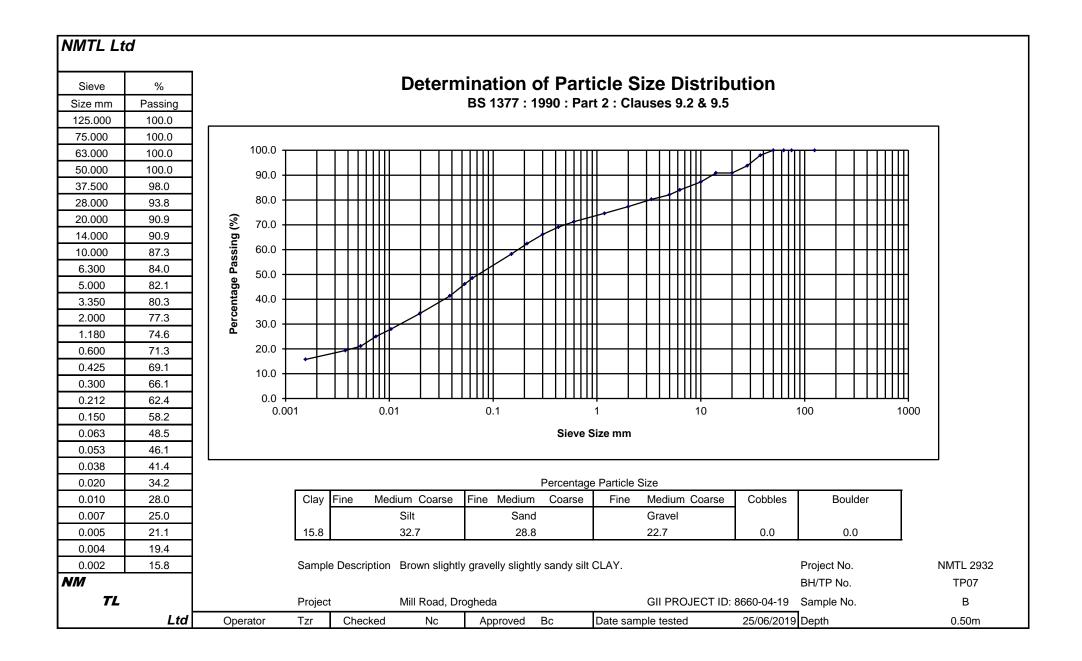

Modulus of subgrade reaction, K (Reload) =	16.25 MN/m2/m
Equivalent CBR(initial)in accordance with HD25/94 volume7 section2	= 0.19 %
Equivalent CBR(reload)in accordance with HD25/94 volume7 section2	2 = 1.21 %

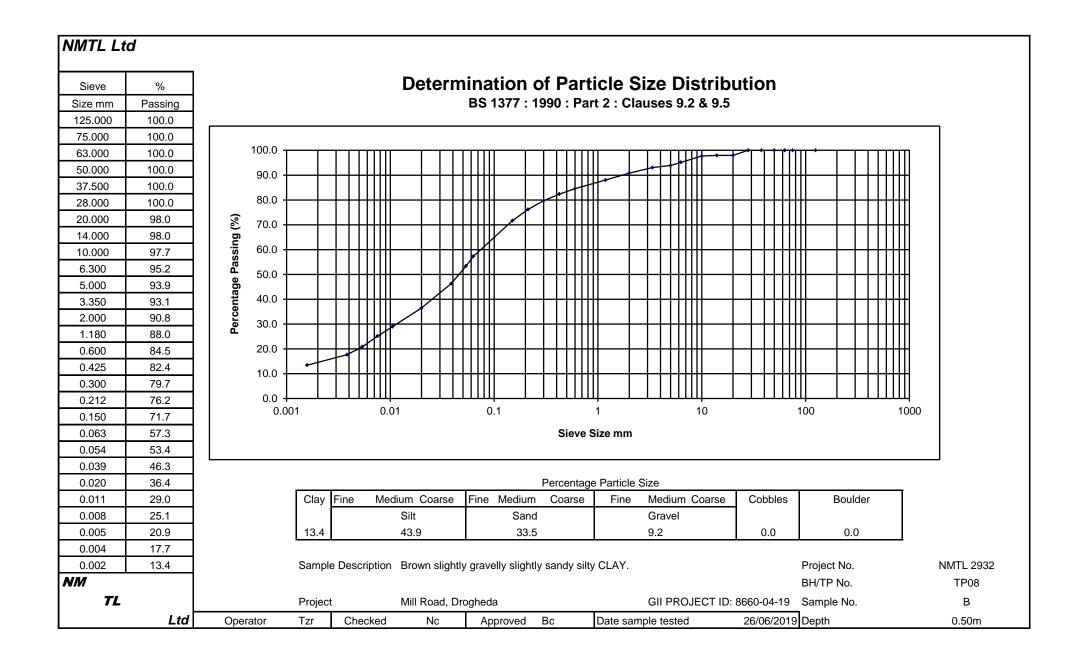

APPENDIX 6 – Laboratory Testing

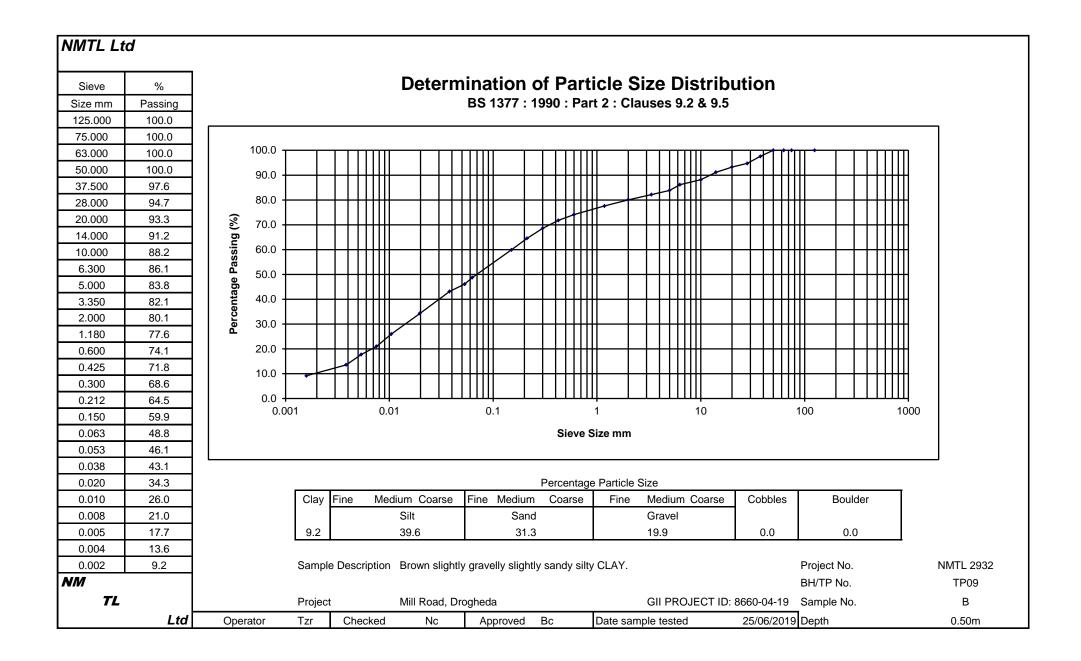

National Materials Testing Laboratory Ltd.

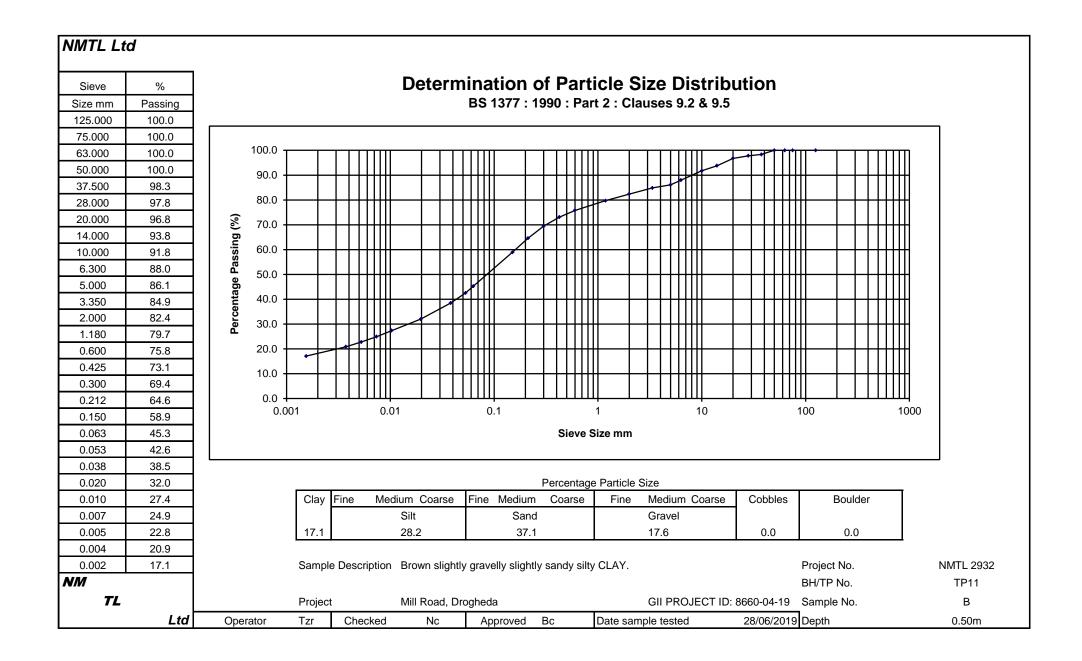

				Particle			Index Prop	perties	Bulk	Cell	Undrained Tria:	xial Tests	Lab	
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
		1												
TP01	0.50	В	20.5	2.64	21.9	40	23	17						
TP02	0.50	В	30.6	2.59	86.2	48	23	25						
TP03	1.00	В	22.2	2.63	85.7	39	23	16						
TP06	0.50	В	15.3	2.67	67.5	44	22	22						
TP07	0.50	В	21.3	2.65	69.1	41	21	20						
TP08	0.50	В	16.7	2.64	82.4	29	18	11						
TP09	0.50	В	25.2	2.67	71.8	34	21	13						
TP11	0.50	В	18.6	2.63	73.1	36	18	18						
TP12	0.50	В	19.8	2.63	71.3	35	22	13						
MTL]	Notes :									Job ref No.	NMTL	GII Project ID:	8660-04-19
			1. All BS te	ests carried	l out using p	referred (definitive) n	nethod ur	nless otherw	ise stated.	Location	Mill Road,	Drogheda	

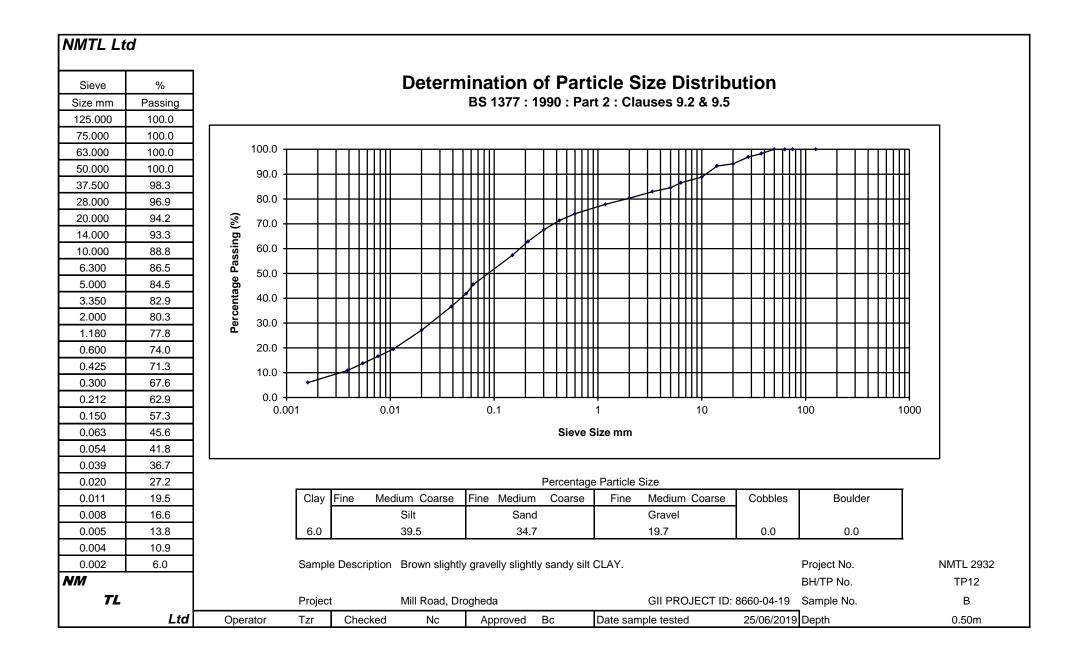
SUMMARY OF TEST RESULTS

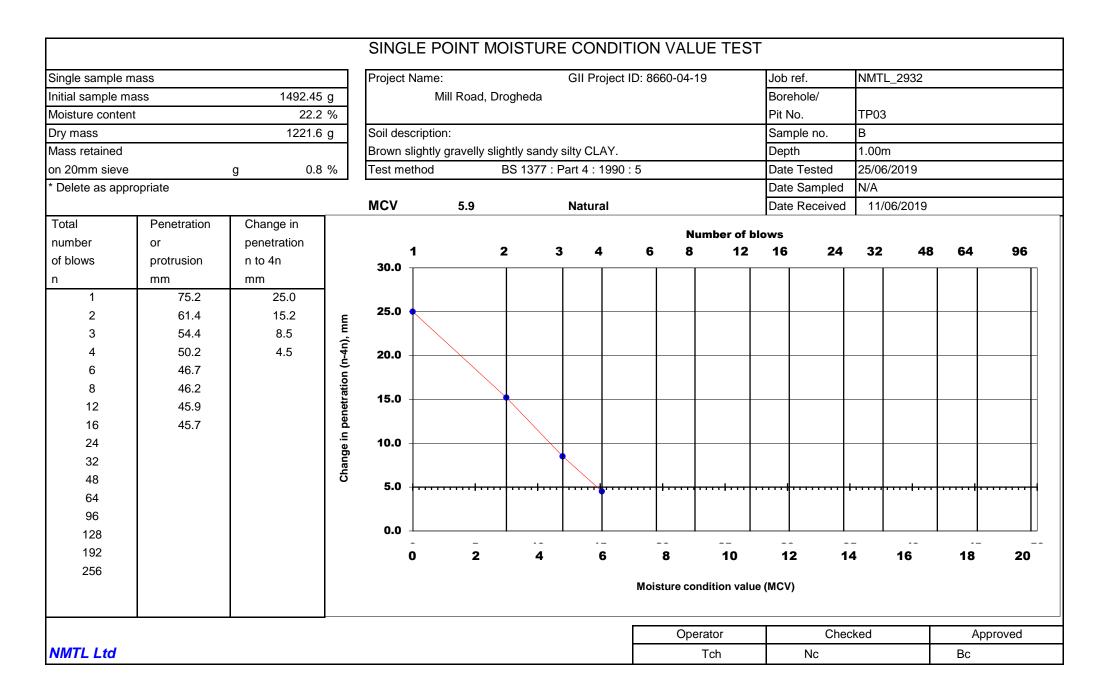


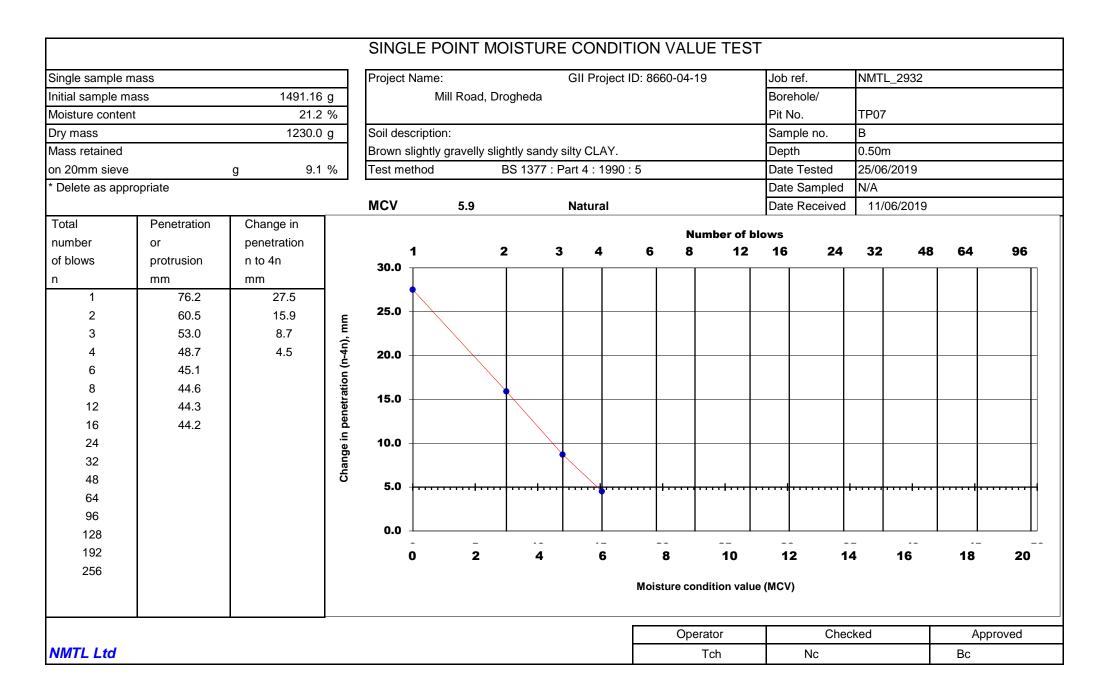


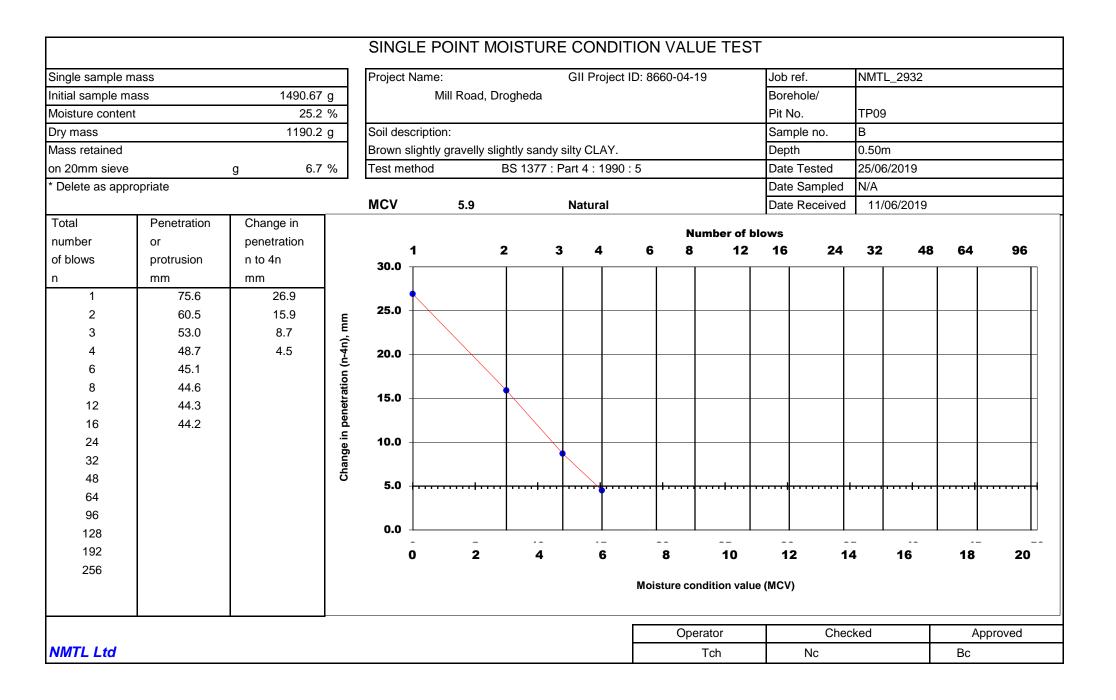


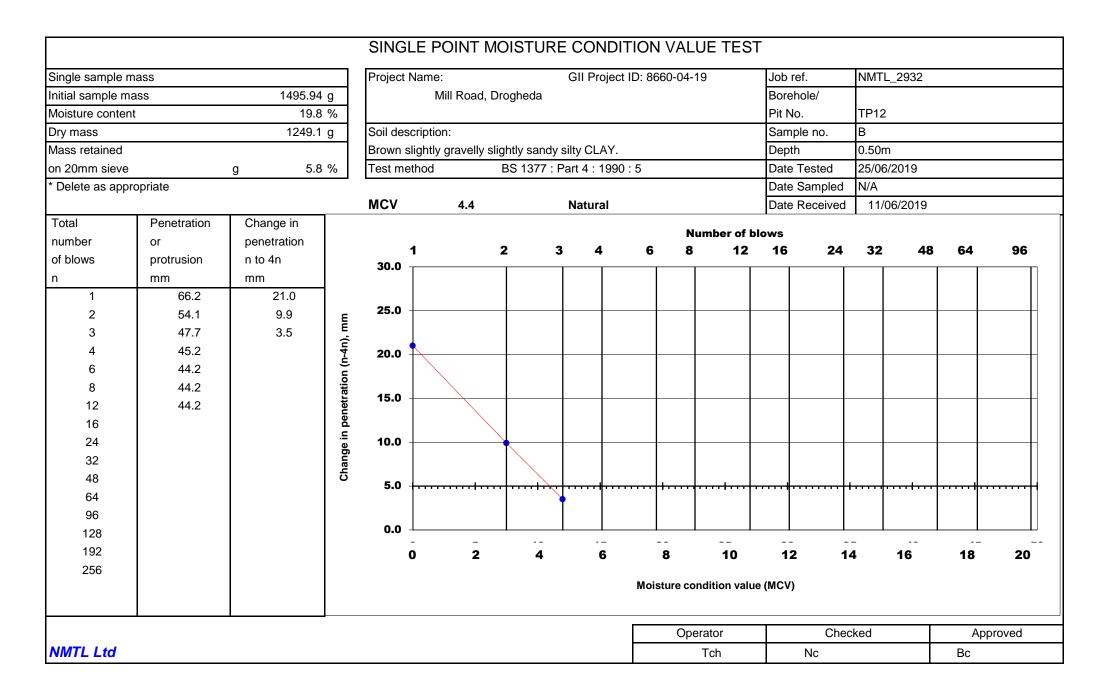


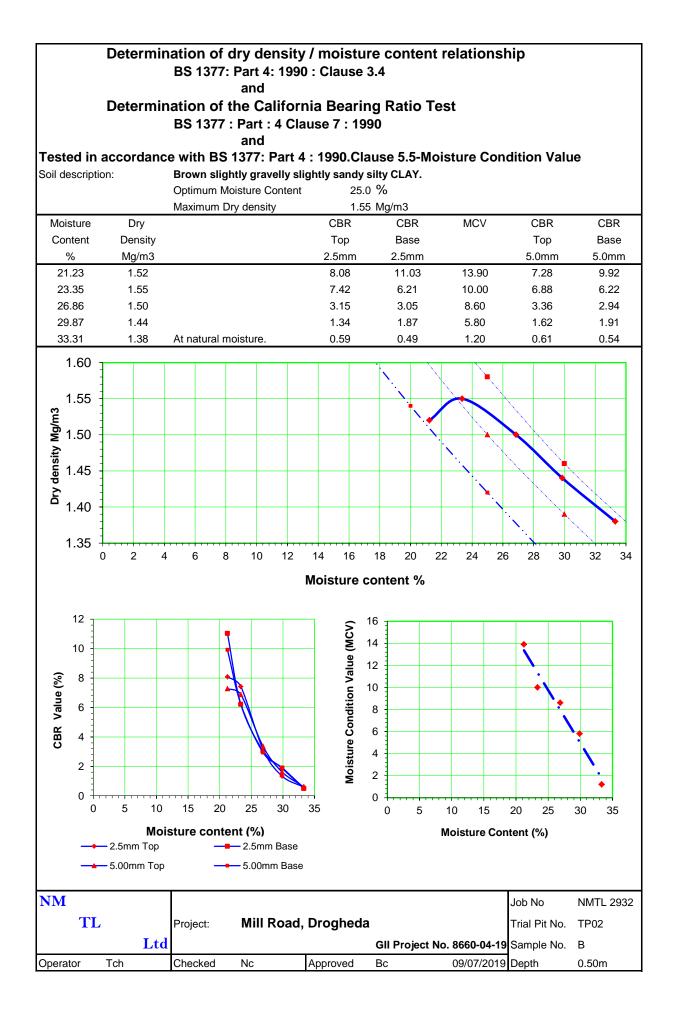


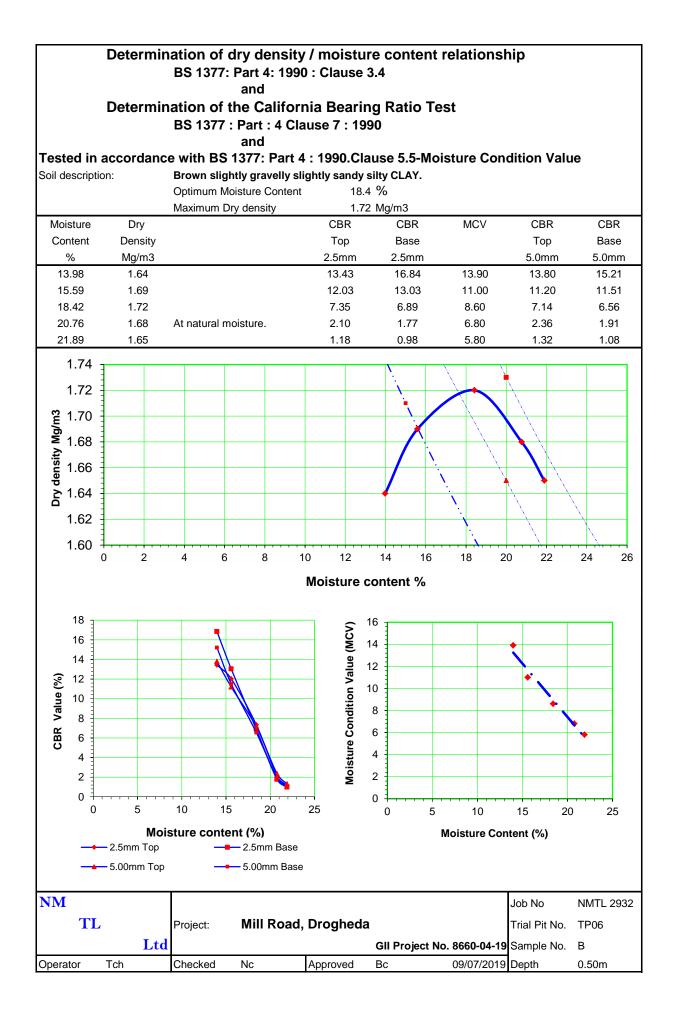


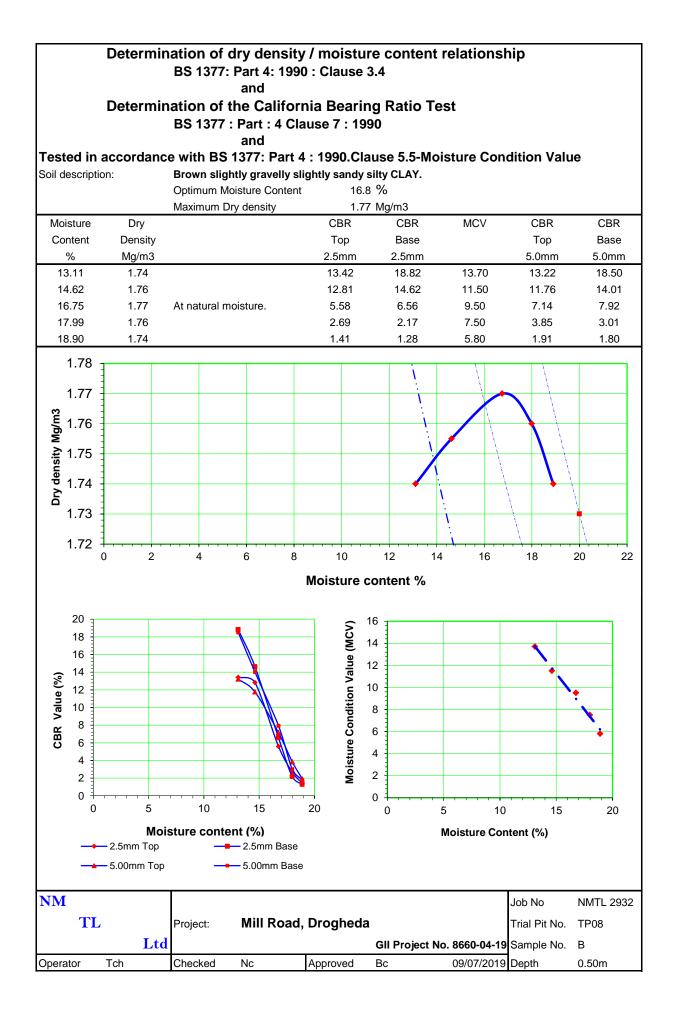


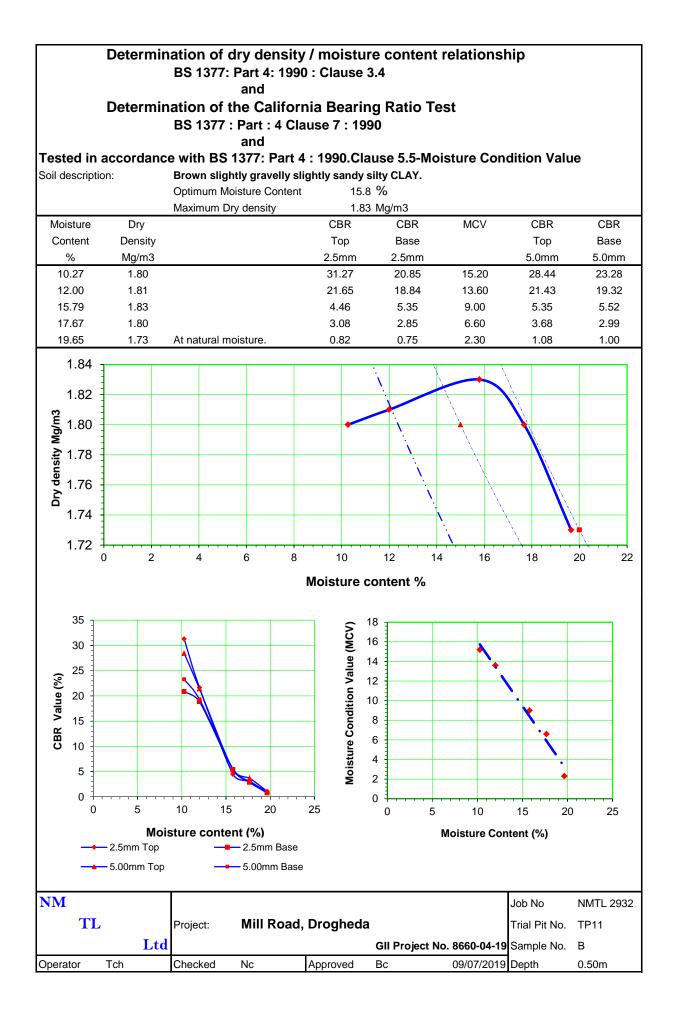





Single sample mass					Project Name: GII Project ID: 8660-04-19						Job ref		NMTL	2932		
Initial sample mass 1489.49 g					Mill Road, D	rogheda					Borehole/					
Moisture conte	nt	20.5	%								Pit No.		TP01			
Dry mass		1236.2	g	Soil des	cription:						Sample	e no.	В	3		
Mass retained				Brown s	lightly sandy sligh	tly gravelly	SILT/CLAY	Y			Depth		1.50m	ı		
on 20mm sieve)	g 56.9	%	Test me	thod	BS 1377 : F	Part 4 : 199	90 : 5			Date T	ested	25/06	/2019		
* Delete as app	propriate										Date S	ampled	N/A			
				MCV	2.3		Natural				Date R	eceived	11/0	06/2019		
Total	Penetration	Change in	1						N	umber of b	lowe					
number	or	penetration			1	23	4	6	8	12 nii 12	16	24	32	48	64	96
of blows	protrusion	n to 4n		30.0	• ·											
n	mm	mm														
1	55.6	11.8		05.0												
2	46.3	2.8	Ę	25.0												
3	44.0		u ,(ر													
4	43.8		n-41	20.0												
6	43.6) uo													
8	43.5		rati	15.0												
12			enet													
16			ď		•											
24			ige i	10.0												
32			Change in penetration (n-4n), mm													
48			0	5.0		+			┝╍╍╍╋					····+	 	+
64						•										
96				0.0												
128 192								-								
192 256					0 2	4	6	1	8	10	12	14	4	16	18	20
200								Moist	ture cor	ndition valu	e (MCV)					
									Ope	rator		Chec	ked	$\overline{}$	Арр	oroved
NMTL Ltd										Tch		Nc			Bc	







LABORATORY REPORT

4043

Contract Number: PSL19/4273

Report Date: 02 August 2019

Client's Reference: 2469150

Client Name: Ground Investigations Ireland Ltd Catherinestown House Hazelhatch Road Newcastle Co Durham

For the attention of: Stephen Kealy

Contract Title:Mill Road, DroghedaDate Received:12/7/2019Date Commenced:12/7/2019Date Completed:12/7/2019

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

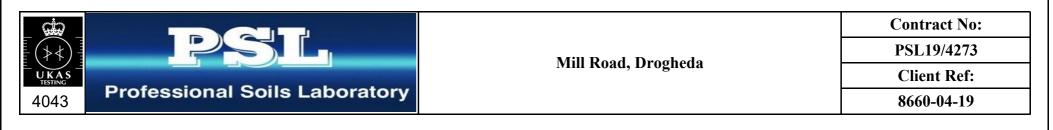
L Knight (Senior Technician) S Eyre (Senior Technician)

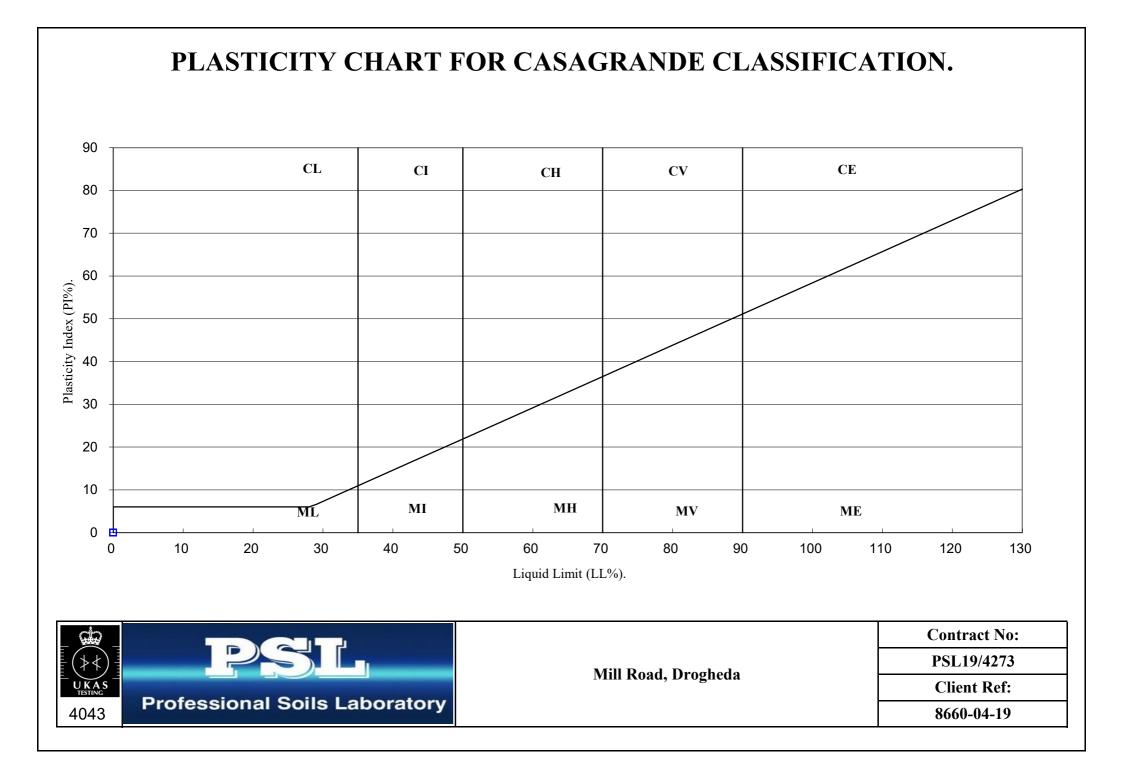
R Cowles (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
RC01		В	2.20	7.70	Grey GRAVEL
RC13		B	3.35	5.20	Grey GRAVEL
Keit		D	0.00	5.20	

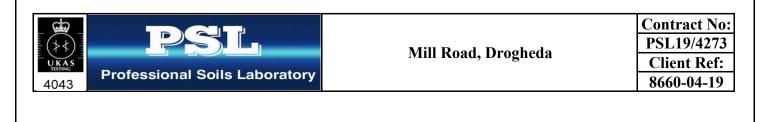

SUMMARY OF SOIL CLASSIFICATION TESTS


(BS1377 : PART 2 : 1990)

Hole	Sample	Sample	Top	Base	Moisture Content %	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm %	Remarks
Number	Number	Туре	Depth	Depth							% 0	
		_	m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
RC01		В	2.20	7.70	0.3				NP			
RC13		В	3.35	5.20	0.7				NP			

SYMBOLS : NP : Non Plastic

* : Liquid Limit and Plastic Limit Wet Sieved.

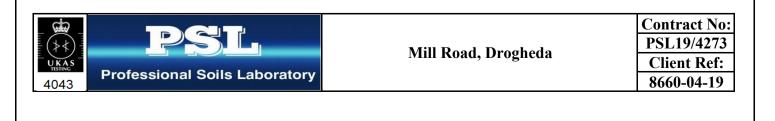

DETERMINATION OF LOS ANGELES COEFFICIENT

BS EN ISO 1097 Part 2 : 2010

Hole Number:	RC01	Top Depth (m): 2.20
Sample Number:		Base Depth (m): 7.70
Sample Type:	BB	Sample Date:
Sample Description:	See summary of soil descriptions	

Test Specimen Details:	Mass (g)	Mass (%)
Passing 14mm sieve	5000	100
Retained 12.5mm sieve	1902	38
Retained 10mm sieve	3098	62
Retained 1.6mm sieve post rotation and washing	4080	n/a

Test Results:	
LA Coefficient	18


DETERMINATION OF LOS ANGELES COEFFICIENT

BS EN ISO 1097 Part 2 : 2010

Hole Number:	RC13	Top Depth (m): 3.35
Sample Number:		Base Depth (m): 5.20
Sample Type:	BB	Sample Date:
Sample Description:	See summary of soil descriptions	

Test Specimen Details:	Mass (g)	Mass (%)
Passing 14mm sieve	5000	100
Retained 12.5mm sieve	1921	38
Retained 10mm sieve	3079	62
Retained 1.6mm sieve post rotation and washing	4122	n/a

Test Results:	
LA Coefficient	18

Date: 06 August 2019 Test Report Ref: TR 685980

Order No: PSL19/4273

Page 1 of 1

Contract: Mill Road, Drogheda

LABORATORY TEST REPORT

TEST REQUIREMENTS:To determine the Acid Soluble Sulfate of an Aggregate Sample
in accordance with BS EN 1744-1 : 2009 + A1 : 2012 Clause 12

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S82152
Client Ref. No:	RC01
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	26/07/2019
Date of Start of Test:	02/08/2019
Sampling Location:	RC01 @ 2.2 - 7.7m
Name of Source:	Unknown
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Client
Material Description:	Rock Cores
Target Specification:	N/A

Acid Soluble Sulfate Content (SO ₃) (%) =		<0.1 (nearest 0.1%)
95% Confidence limit*	:	<0.09% - <0.11%

<u>Comments</u> 95% confidence limit calculation:- Test Result ± expanded uncertainty. <i>Expanded uncertainty = combined uncertainty multiplied by a factor (k) of</i>	Report checked and approved by:
2.	Meical Owen Soils Team Manager

Date: 06 August 2019 Test Report Ref: TR 685982

Order No: PSL19/4273

Page 1 of 1

Contract: Mill Road, Drogheda

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 + A1 : 2012 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S82152
Client Ref. No:	RC01
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	26/07/2019
Date of Start of Test:	02/08/2019
Sampling Location:	RC01 @ 2.2 - 7.7m
Name of Source:	Unknown
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Client
Material Description:	Rock Cores
Target Specification:	N/A

Total Sulfur Content as S (%) =		<0.1
95% Confidence limit*	=	<0.06% - <0.14%

Comments / Departure from specified Procedure	Report checked and approved by:
*95% Confidence limit is the expanded uncertainty which combined uncertainty standard multiplied by a factor (k	A A A A A A A A A A A A A A A A A A A
	Meical Owen
	Soils Team Manager

Date: 06 August 2019 Test Report Ref: TR 685985

Order No: PSL19/4273

Page 1 of 1

Contract: Mill Road, Drogheda

LABORATORY TEST REPORT

TEST REQUIREMENTS:To determine the Water Soluble Sulfate of Natural and ManufacturedAggregate in accordance with **BS EN 1744-1 : 2009 + A1 : 2012 : Clause 10.1**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S82152
Client Ref. No:	RC01
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	26/07/2019
Date of Start of Test:	02/08/2019
Sampling Location:	RC01 @ 2.2 - 7.7m
Name of Source:	Unknown
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Client
Material Description:	Rock Cores
Target Specification:	N/A

Water Soluble Sulfate Content (SO ₃) (%) =	Result <0.01	95% Confidence limit* <0.007% - <0.013%
Water Soluble Sulfate Content (SO ₄) (%) =	<0.01	<0.007% - <0.013%

Comments / Departure from specified Procedure	Report checked and approved by:
95% confidence limit calculation:- Test Result ± expanded uncertainty.	PRIQuen
Expanded uncertainty = combined uncertainty multiplied by a factor (k)	Surrout
of 2.	Meical Owen
	Soils Team Manager

Professional Soils Laboratory 5 - 7 Hexthorpe Road Hexthorpe Doncaster West Yorkshire DN4 OAR Contract: Mill Road, Drogheda

Date: 06 August 2019 Test Report Ref: TR 685986

Order No: PSL19/4273

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine Flakiness Index of Aggregate Sample in accordance with **BS EN 933-3: 2012**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S82152
Client Ref. No:	RC01
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	26/07/2019
Date of Start of Test:	30/07/2019
Sampling Location:	RC01 @ 2.2 - 7.7m
Name of Source:	Unknown
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Client
Material Description:	Rock Cores
Target Specification:	N/A

Mass of Test Portion =	5061 g
Flakiness Index (FI) =	47

Comments:	Report checked and approved by:
None	ytuQuer
	0.00
	Meical Owen
	Soils Team Manager

Professional Soils Laboratory 5 - 7 Hexthorpe Road Hexthorpe Doncaster West Yorkshire DN4 0AR Contract: Mill Road, Drogheda Date: 06 August 2019 Test Report Ref: TR 685988

Order No: PSL19/4273

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Particle Density and water absorption for aggregate sample between 4 mm and 31.5mm, in accordance with **BS EN 1097-6: 2013 Clause 8**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S82152
Client Ref. No:	RC01
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	26/07/2019
Date of Start of Test:	31/07/2019
Sampling Location:	RC01 @ 2.2 - 7.7m
Name of Source:	Unknown
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Client
Material Description:	Rock Cores
Target Specification:	N/A

Particle density on an oven-dried basis =	2.65 Mg/m ³
Particle density on a saturated and surface-dried basis =	2.66 Mg/m ³
Apparent Particle density =	2.68 Mg/m ³
Water absorption (of dry mass) =	0.4%

<u>Comments:</u> None	Report checked and approved by:
	Meical Owen
	Soils Team Manager

Date: 06 August 2019 Test Report Ref: TR 685990

Order No: PSL19/4273

Page 1 of 1

Contract: Mill Road, Drogheda

LABORATORY TEST REPORT

TEST REQUIREMENTS:To determine the Acid Soluble Sulfate of an Aggregate Sample
in accordance with BS EN 1744-1 : 2009 + A1 : 2012 Clause 12

SAMPLE DETAILS:

Certificate of sampling received:	Νο
Laboratory Ref. No:	S82152
Client Ref. No:	RC13
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	26/07/2019
Date of Start of Test:	02/08/2019
Sampling Location:	RC13 @3.35 - 5.2m
Name of Source:	Unknown
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Client
Material Description:	Rock Cores
Target Specification:	N/A

Acid Soluble Sulfate Content (SO	₃) (%) =	0.1 (nearest 0.1%)
95% Confidence limit*	:	0.09% - 0.11%

<u>Comments</u>	Report checked and approved by:
95% confidence limit calculation:- Test Result ± expanded uncertainty.	Ref ord
Expanded uncertainty = combined uncertainty multiplied by a factor (k) of	Small
2.	Meical Owen
	Soils Team Manager

Date: 06 August 2019 Test Report Ref: TR 685992

Order No: PSL19/4273

Page 1 of 1

Contract: Mill Road, Drogheda

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Total Sulfur Content of an Aggregate Sample in accordance with **BS EN 1744-1 : 2009 + A1 : 2012 : Clause 11**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S82152
Client Ref. No:	RC13
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	26/07/2019
Date of Start of Test:	02/08/2019
Sampling Location:	RC13 @3.35 - 5.2m
Name of Source:	Unknown
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Client
Material Description:	Rock Cores
Target Specification:	N/A

RESULTS:

Total Sulfur Content as S (%) =		0.1
95% Confidence limit*	=	0.06% - 0.14%

Comments / Departure from specified Procedure	Report checked and approved by:
*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2	Growen
	Meical Owen
	Soils Team Manager

Celtest Company Limited. Registered in Wales1533370. Vat No. 352-5034-81

Date: 06 August 2019 Test Report Ref: TR 685995

Order No: PSL19/4273

Page 1 of 1

Contract: Mill Road, Drogheda

LABORATORY TEST REPORT

TEST REQUIREMENTS:To determine the Water Soluble Sulfate of Natural and ManufacturedAggregate in accordance with **BS EN 1744-1 : 2009 + A1 : 2012 : Clause 10.1**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S82152
Client Ref. No:	RC13
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	26/07/2019
Date of Start of Test:	02/08/2019
Sampling Location:	RC13 @3.35 - 5.2m
Name of Source:	Unknown
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Client
Material Description:	Rock Cores
Target Specification:	N/A

Water Soluble Sulfate Content (SO ₃) (%) =	Result <0.01	95% Confidence limit* <0.007% - <0.013%
Water Soluble Sulfate Content (SO ₄) (%) =	<0.01	<0.007% - <0.013%

Comments / Departure from specified Procedure	Report checked and approved by:
95% confidence limit calculation:- Test Result ± expanded uncertainty.	Requer
Expanded uncertainty = combined uncertainty multiplied by a factor (k)	Surgeon
of 2.	Meical Owen
	Soils Team Manager

Professional Soils Laboratory 5 - 7 Hexthorpe Road Hexthorpe Doncaster West Yorkshire DN4 OAR Contract: Mill Road, Drogheda

Date: 06 August 2019 Test Report Ref: TR 685996

Order No: PSL19/4273

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine Flakiness Index of Aggregate Sample in accordance with **BS EN 933-3: 2012**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S82152
Client Ref. No:	RC13
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	26/07/2019
Date of Start of Test:	30/07/2019
Sampling Location:	RC13 @3.35 - 5.2m
Name of Source:	Unknown
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Client
Material Description:	Rock Cores
Target Specification:	N/A

Mass of Test Portion =	5030 g
Flakiness Index (FI) =	38

Comments:	Report checked and approved by:
None	ytu Quer
	Emilia L
	Meical Owen
	Soils Team Manager

Professional Soils Laboratory 5 - 7 Hexthorpe Road Hexthorpe Doncaster West Yorkshire DN4 0AR Contract: Mill Road, Drogheda Date: 06 August 2019 Test Report Ref: TR 685998

Order No: PSL19/4273

Page 1 of 1

LABORATORY TEST REPORT

TEST REQUIREMENTS:

To determine the Particle Density and water absorption for aggregate sample between 4 mm and 31.5mm, in accordance with **BS EN 1097-6: 2013 Clause 8**

SAMPLE DETAILS:

Certificate of sampling received:	No
Laboratory Ref. No:	S82152
Client Ref. No:	RC13
Date and Time of Sampling:	Unknown
Date of Receipt at Lab:	26/07/2019
Date of Start of Test:	31/07/2019
Sampling Location:	RC13 @3.35 - 5.2m
Name of Source:	Unknown
Method of Sampling:	Disturbed Bulk Sample
Sampled By:	Client
Material Description:	Rock Cores
Target Specification:	N/A

RESULTS:

Particle density on an oven-dried basis =	2.62 Mg/m ³
Particle density on a saturated and surface-dried basis =	2.64 Mg/m ³
Apparent Particle density =	2.67 Mg/m ³
Water absorption (of dry mass) =	0.8%

<u>Comments:</u> None	Report checked and approved by:
	Meical Owen Soils Team Manager

Trefelin Bangor Gwynedd LL57 4LH T +44 (0)1248 355269 F +44 (0)1248 351563 E postmaster@celtest.com W www.celtest.com

Ground Investigations Ireland Catherinestown House

Hazelhatch Road

Newcastle Co. Dublin Ireland

Exova Jones Environmental

Registered Office: Exova Environmental UK Limited, 10 Lower Grosvenor Place, London, SW1W 0EN. Reg No. 11371415

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Aisling McDonnell
22nd May, 2019
8660-04-19
Test Report 19/7701 Batch 1
Mill Road, Drogheda
13th May, 2019
Final report
1

Twenty samples were received for analysis on 13th May, 2019 of which twenty were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Where Waste Acceptance Criteria Suite (EC Decision of 19 December 2002 (2003/33/EC)) has been requested, all analyses have been performed using the relevant EN methods where they exist.

Compiled By:

b. Juse

Bruce Leslie Project Manager

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8660-04-19 Mill Road, Drogheda Aisling McDonnell 19/7701

Report : Solid

JE JOD NO.:	19/7701										-				
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30					
Sample ID	TP01	TP02	TP03	TP04	TP06	TP07	TP08	TP09	TP10	TP11					
Depth	0.50	0.50	1.00	0.50	0.50	0.50	0.50	0.50	0.50	0.50	Please see attached notes for a				
COC No / misc											abbreviations and acronyms				
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	01/05/2019	01/05/2019	01/05/2019	01/05/2019					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number															
	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.		
Date of Receipt										13/05/2019					
Antimony	3	2	3	3	4	4	5	2	3	3	<1	mg/kg	TM30/PM15 TM30/PM15		
Arsenic [#] Barium [#]	9.4 38	8.6 237	11.9 96	17.5 84	19.7 103	24.8 127	19.8 85	11.0 73	20.3 154	20.7 103	<0.5 <1	mg/kg	TM30/PM15 TM30/PM15		
Cadmium [#]	1.4	2.6	1.5	1.1	1.2	1.8	1.2	0.9	1.8	1.7	<0.1	mg/kg mg/kg	TM30/PM15		
Chromium [#]	17.0	50.1	56.1	57.5	65.7	58.4	48.1	55.7	53.1	41.4	<0.5	mg/kg	TM30/PM15		
Copper [#]	21	30	28	37	46	55	53	23	51	52	<1	mg/kg	TM30/PM15		
Lead [#]	9	22	19	28	23	23	28	20	22	22	<5	mg/kg	TM30/PM15		
Mercury [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15		
Molybdenum #	5.0	2.8	3.0	3.8	4.6	5.6	6.7	4.2	4.1	5.4	<0.1	mg/kg	TM30/PM15		
Nickel [#]	46.6	49.8	53.7	54.5	67.0	73.5	56.4	34.0	74.6	68.6	<0.7	mg/kg	TM30/PM15		
Selenium [#]	<1	2	1	1	3	3	3	1	2	2	<1	mg/kg	TM30/PM15		
Zinc [#]	94	109	72	88	76	84	82	72	96	79	<5	mg/kg	TM30/PM15		
PAH MS															
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Acenaphthylene	<0.03	<0.03	<0.03	0.27	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8		
Acenaphthene #	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8		
Fluorene [#]	<0.04 <0.03	<0.04 <0.03	<0.04	0.13	<0.04	<0.04 <0.03	<0.04 <0.03	<0.04	<0.04	<0.04 <0.03	<0.04	mg/kg	TM4/PM8 TM4/PM8		
Phenanthrene [#] Anthracene [#]	<0.03	<0.03	<0.03 <0.04	0.35	<0.03 <0.04	<0.03	<0.03	<0.03 <0.04	<0.03 <0.04	<0.03	<0.03 <0.04	mg/kg mg/kg	TM4/PM8		
Fluoranthene [#]	<0.03	<0.03	<0.03	2.96	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8		
Pyrene [#]	< 0.03	<0.03	<0.03	2.41	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8		
Benzo(a)anthracene [#]	<0.06	<0.06	<0.06	1.09	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8		
Chrysene [#]	<0.02	<0.02	<0.02	1.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8		
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07	1.93	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8		
Benzo(a)pyrene [#]	<0.04	<0.04	<0.04	1.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	0.65	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	0.14	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Benzo(ghi)perylene [#]	<0.04	<0.04	<0.04	0.60	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
Coronene	<0.04	<0.04	<0.04	0.13	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8		
PAH 6 Total [#]	<0.22	<0.22	<0.22	7.19	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	mg/kg	TM4/PM8		
PAH 17 Total	<0.64	<0.64	<0.64	14.74	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8		
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	1.39	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8		
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	0.54	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8		
Benzo(j)fluoranthene PAH Surrogate % Recovery	<1 86	<1 93	<1 78	<1 95	<1 96	<1 98	<1 95	<1 81	<1 86	<1 91	<1 <0	mg/kg %	TM4/PM8 TM4/PM8		
PAIT Suffogate // Recovery	00	93	70	35	50	50	90	01	80	51	<0	78	TIVI4/FIVIO		
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16		

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8660-04-19 Mill Road, Drogheda Aisling McDonnell 19/7701

Report : Solid

JE JOD NO.:	19/7701														
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30					
Sample ID	TP01	TP02	TP03	TP04	TP06	TP07	TP08	TP09	TP10	TP11					
Depth	0.50	0.50	1.00	0.50	0.50	0.50	0.50	0.50	0.50	0.50	Please see attached notes for al abbreviations and acronyms				
COC No / misc															
Containers	VJT														
Sample Date															
-										01/05/2019					
Sample Type	Soil														
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.		
Date of Receipt	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019			INO.		
TPH CWG															
Aliphatics															
>C5-C6 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>C6-C8 [#] >C8-C10	<0.1 <0.1	mg/kg mg/kg	TM36/PM12 TM36/PM12												
>C10-C12 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM50/TW12 TM5/PM8/PM16		
>C12-C16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16		
>C16-C21#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
>C21-C35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
>C35-C40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
Total aliphatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM38/PM8/PM12/PM16		
>C6-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>C10-C25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16		
>C25-C35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16		
Aromatics	-0.4	-0.4	-0.4	.0.4	-0.4	-0.4	.0.1	-0.4	.0.4	.0.4	.0.4		TM00/DM40		
>C5-EC7 [#] >EC7-EC8 [#]	<0.1 <0.1	mg/kg mg/kg	TM36/PM12 TM36/PM12												
>EC8-EC10 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>EC10-EC12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16		
>EC12-EC16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16		
>EC16-EC21 #	<7	<7	<7	22	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
>EC21-EC35 [#]	<7	<7	<7	56	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
>EC35-EC40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16		
Total aromatics C5-40	<26	<26	<26	78	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM38/PM8/PM12/PM18		
Total aliphatics and aromatics(C5-40)	<52	<52	<52	78	<52	<52	<52	<52	<52	<52	<52	mg/kg	TM5/TM38/PM8/PM12/PM16		
>EC6-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12		
>EC10-EC25 >EC25-EC35	<10 <10	<10 <10	<10 <10	45 40	<10 <10	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16								
>EC25-EC35	<10	<10	<10	40	<10	<10	<10	<10	<10	<10	<10	mg/kg	11/13/P1/16/P1/16		
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12		
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12		
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12		
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12		
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12		
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12		
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 52 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 138 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 153 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
PCB 180 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8		
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8		

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8660-04-19 Mill Road, Drogheda Aisling McDonnell 19/7701

Report : Solid

JE Job No.:	19/7701										L		
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	TP01	TP02	TP03	TP04	TP06	TP07	TP08	TP09	TP10	TP11			
Depth	0.50	0.50	1.00	0.50	0.50	0.50	0.50	0.50	0.50	0.50	Please se	otes for all	
COC No / misc											abbrevi	cronyms	
Containers	VJT												
Sample Date	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	01/05/2019	01/05/2019	01/05/2019	01/05/2019			
Sample Type	Soil		1										
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt										13/05/2019			
Natural Moisture Content Moisture Content (% Wet Weight)	24.4 19.6	26.9 21.2	21.4 17.6	18.3 15.4	18.8 15.8	21.9 18.0	22.4 18.3	27.2 21.4	24.3 19.6	19.8 16.5	<0.1 <0.1	%	PM4/PM0 PM4/PM0
	10.0	21.2	11.0	10.4	10.0	10.0	10.0	21.4	10.0	10.0	50.1	70	1 101-071 1010
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Chromium III	17.0	50.1	56.1	57.5	65.7	58.4	48.1	55.7	53.1	41.4	<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	0.43	0.91	0.35	0.76	0.33	0.35	0.56	0.68	0.60	0.38	<0.02	%	TM21/PM24
pH#	8.61	8.15	8.09	8.44	7.98	7.65	8.26	6.49	7.63	7.51	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1102	0.1139	0.1096	0.1107	0.1079	0.1119	0.1065	0.1136	0.1144	0.1054		kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Ground Investigations Ireland 8660-04-19 Mill Road, Drogheda Aisling McDonnell 19/7701

Report : Solid

PAH MS · <th>JE JOD NO.:</th> <th>19/7701</th> <th></th>	JE JOD NO.:	19/7701												
Image: biologSine<	J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
COC Normic ContainedVJT<	Sample ID	TP12	TP13	TP14	TP15	TP16	TP17	TP18	TP19	TP20	TP21			
COC No / miseVVV<	Depth	0.50	1.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	Plaasa sa	o attachad n	otos for all
Sampa DaySind	COC No / misc													
Sampa DaySind	Containers	VIT												
Sample TypeSait <th></th>														
Batch Nummer 1 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>														
Date of Receip 13052001		Soil												
Date of receipe Number 1	Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	
Ansenic 13.6 12.7 9.7 18.0 14.4 12.3 17.0 18.1 11.3 12.6 -0.5 mays TMOOPMIS Barum 76 67 101 125 155 145 97 128 69 90 -1 mays TMOOPMIS Commun 39.1 32.3 52.2 49.5 54.8 43.1 56.7 47.5 45.1 48.0 -0.5 mays TMOOPMIS Congert 27 37 18 52.2 42.0 14 40 2.0 2.7 -1 mays TMOOPMIS Mass 2.4 1.1 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 mays TMOOPMIS Mass 7.6 7.7 3.4 3.8 2.6 4.8 4.2 3.8 -0.1 mays TMOOPMIS Mass 7.6 7.7 7.8 TMOOPMIS -0.0 -0.0	Date of Receipt	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019			INO.
Banum* 76 67 101 125 155 145 97 128 59 90 mage TMORPMIS Cadmum* 0.9 0.8 1.0 1.6 1.2 0.4 1.7 1.6 1.3 1.0 0.1 mage TMORPMIS Commum* 27 37 18 522 52 20 41 40 29 27 mage TMORPMIS Morary* 244 13 18 24 47 18 21 21 15 20 -5 mage TMORPMIS Morary** 312 412 29.1 65.8 35.5 43.2 64.6 63.8 37.0 42.0 -0.7 TMORPMIS Stemium* 312 412 29.1 65.8 87.7 54 84. 86 64 74 6.7 TMORPMIS Part 40.04 40.04 40.04 40.04 40.04 40.04 40	-													
Cudmum* 0.9 0.8 1.0 1.8 1.2 0.4 1.7 1.6 1.3 1.0 c.11 mgkp TM30PM15 Chromium* 39.1 32.3 52.2 49.5 54.8 43.1 567. 47.5 45.1 48.0 c.0.5 mgkp TM30PM15 Chromium* 24 13 18 24.4 47.7 18 21.1 21.1 15.0 20.1 c.5.1 mgkp TM30PM15 Marcury -0.1														
Chromium 39.1 32.3 52.2 49.5 54.8 43.1 56.7 47.5 45.1 48.0 <0.5														
Copper 27 37 18 52 52 20 41 40 29 27 mpkg TMORPMIS Liand 24 13 18 24 47 18 21 21 15 20 45 mpkg TMORPMIS Metruy 3.7 1.7 3.7 3.4 3.8 2.6 4.6 4.5 4.2 3.8 <0.1														
Lead* 24 13 18 24 47 18 21 21 15 20 45 mg/g TM30PM15 Marcay* 40.1 40.0														
Mercany ⁴ 0.01 0.00 MotionMistic Selentum* 2 0.1 2 2 1 2 2 1 2 2 1 1 1 0.1 0.01 0.00 0.00 0.01 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>														
Molydenum* 3.7 1.7 3.7 3.4 3.8 2.6 4.6 4.5 4.2 3.8 c.1 mgkg TM30PM15 Nicka* 31.2 41.2 29.1 65.8 36.5 43.2 64.6 63.8 37.0 42.0 c.0.7 mgkg TM30PM15 Selenium* 2 <1 2 2 1 2 2 1 1 c.5 mgkg TM30PM15 Selenium* 2 <1 2 0 0 0 c.5 mgkg TM30PM15 AAM MS 0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04														
Nickat* 31.2 41.2 29.1 65.8 36.5 43.2 64.6 63.8 37.0 42.0 47.7 mg/kg TM30PM15 Selenium* 2 41 2 2 1 2 2 1 1 41 41 mg/kg TM30PM15 Zinc* 69 58 79 88 87 54 84 88 64.7 4.5 mg/kg TM30PM15 PAH 60 4.0.4														
Selenium* 2 <1	-													
Zinc* 69 58 79 88 87 54 84 86 64 74 <5														
PAH MS ···· ···· ···· </th <th></th> <th>TM30/PM15</th>														TM30/PM15
Naphthalene* <0.04														
Accenaphthylene <0.03	PAH MS													
Accampittene* <0.05	Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluorene* <0.04	Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Phenanthrene* <0.03	Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Anthracene* <0.04	Fluorene #		<0.04	<0.04		<0.04	<0.04		<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Fluoranthene* <0.03														
Pyrene* <0.03														
Benzo(a)anthracene* <0.06														
Chrysene [#] <0.02	-													
Benzo(bk)fluoranthene # <0.07														
Benzo(a)pyrene # <0.04														
Indeno(123cd)pyrene [#] <0.04														
Dibenzo(ah)anthracene [#] <0.04														
Benzo(ghi)perytene [#] <0.04	Dibenzo(ah)anthracene [#]													
PAH 6 Total # <0.22		<0.04	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 17 Total <0.64	Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(b)fluoranthene <0.05	PAH 6 Total [#]	<0.22	<0.22	<0.22	<0.22	0.32	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	mg/kg	TM4/PM8
Benzo(k)fluoranthene <0.02	PAH 17 Total	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8
Benzo(j)fluoranthene <1													mg/kg	
PAH Surrogate % Recovery 92 91 95 94 97 83 95 91 98 93 <0	Benzo(k)fluoranthene													
	Benzo(j)fluoranthene													
Mineral Oil (C10-C40) <30	PAH Surrogate % Recovery	92	91	95	94	97	83	95	91	98	93	<0	%	TM4/PM8
	Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16

Evona Iones Environmental

Client Name:		vestigatior	is Ireland				Report :	Solid		
Reference: Location: Contact: JE Job No.:	8660-04-1 Mill Road, Aisling Mo 19/7701	Drogheda	1				Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60
Sample ID	TP12	TP13	TP14	TP15	TP16	TP17	TP18	TP19	TP20	TP21
Depth	0.50	1.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
COC No / misc										
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT
Sample Date	01/05/2019	01/05/2019	01/05/2019	01/05/2019	01/05/2019	01/05/2019			01/05/2019	
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Batch Number	1	1	1	1	1	1	1	1	1	1
Date of Receipt	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019
TPH CWG										
Aliphatics										
>C5-C6 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
>C6-C8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
>C10-C12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
>C12-C16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
>C16-C21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
>C21-C35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
>C35-C40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
Total aliphatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26
- >C6-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
>C10-C25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
>C25-C35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Aromatics					-					
>C5-EC7 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
>EC7-EC8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
>EC8-EC10 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
>EC10-EC12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
>EC12-EC16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
>EC16-EC21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
>EC21-EC35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
>EC35-EC40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
Total aromatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26
Total aliphatics and aromatics(C5-40)	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52
>EC6-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
>EC10-EC25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
>EC25-EC35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
		-	-	-	-	-	-		-	-
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

ass jar, T=plastic tub

Please see attached notes for all abbreviations and acronyms

Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	LOD/LOR	Units	No.
TPH CWG													
Aliphatics													
>C5-C6 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM10
>C16-C21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C35-C40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM38/PM8/PM12/PM1
>C6-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>C25-C35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
Aromatics													
>C5-EC7 #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM38/PM8/PM12/PM1
Fotal aliphatics and aromatics(C5-40)	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	mg/kg	TM5/TM38/PM8/PM12/PM1
>EC6-EC10#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Ethylbenzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
PCB 28 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8

Client Name: Reference:	Ground Investigations Ireland 8660-04-19 Mill Road, Drogheda							Report : Solid Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub							
Location: Contact: JE Job No.:	Aisling Mo 19/7701		ı 				5011ds: V=	ьод VOC ја	r, J=250g gl	ass jar, T=p	iastic tub				
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60					
Sample ID	TP12	TP13	TP14	TP15	TP16	TP17	TP18	TP19	TP20	TP21					
Depth	0.50	1.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50		e attached n ations and a			
COC No / misc Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			,		
Sample Date															
Sample Type		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1	1	1	1	1					
Date of Receipt					13/05/2019			13/05/2019			LOD/LOR	Units	Method No.		
Natural Moisture Content	23.7	14.2	17.0	20.6	28.1	24.0	17.8	20.3	13.7	18.2	<0.1	%	PM4/PM0		
Moisture Content (% Wet Weight)	19.1	12.4	14.5	17.1	21.9	19.3	15.1	16.9	12.0	15.4	<0.1	%	PM4/PM0		
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM2		
Chromium III	39.1	32.3	52.2	49.5	54.8	43.1	56.7	47.5	45.1	48.0	<0.5	mg/kg	NONE/NON		
Total Organic Carbon #	0.91	0.13	0.48	0.49	1.54	0.46	0.42	0.50	0.24	0.70	<0.02	%	TM21/PM2		
pH#	6.38	8.62	7.50	7.26	6.91	7.51	7.34	7.87	8.59	8.07	<0.01	pH units	TM73/PM1		
Mass of raw test portion	0.1106	0.1017	0.1049	0.1082	0.1124	0.1089	0.1056	0.1102	0.1027	0.1093		kg	NONE/PM1		

Ground Investigations Ireland 8660-04-19 Mill Road, Drogheda Aisling McDonnell 19/7701

Report : CEN 10:1 1 Batch

											_		
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	TP01	TP02	TP03	TP04	TP06	TP07	TP08	TP09	TP10	TP11			
Depth	0.50	0.50	1.00	0.50	0.50	0.50	0.50	0.50	0.50	0.50	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	01/05/2019	01/05/2019	01/05/2019	01/05/2019			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	13/05/2019	13/05/2019	13/05/2019			13/05/2019	13/05/2019	13/05/2019	13/05/2019				
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	mg/kg	TM30/PM17
Dissolved Arsenic #	0.0039	<0.0025 <0.025	<0.0025 <0.025	0.0050	<0.0025 <0.025	mg/l	TM30/PM17 TM30/PM17						
Dissolved Arsenic (A10) # Dissolved Barium [#]	< 0.0039	0.004	<0.023	< 0.003	<0.025	<0.025	<0.025	<0.025	0.011	0.0025	<0.023	mg/kg	TM30/PM17
Dissolved Barium (A10) #	<0.003	0.004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.11	0.004	<0.003	mg/l mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium [#]	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.006	<0.002	0.004	0.017	<0.002	<0.002	0.002	<0.002	<0.002	0.003	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) *	0.06	<0.02	0.04	0.17	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	< 0.002	mg/l	TM30/PM17 TM30/PM17
Dissolved Nickel (A10) * Dissolved Selenium *	<0.02 <0.003	0.02	<0.02 <0.003	<0.02 <0.003	<0.02 <0.003	<0.02 <0.003	<0.02 <0.003	<0.02 <0.003	<0.02 <0.003	<0.02 <0.003	<0.02 <0.003	mg/kg mg/l	TM30/PM17 TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	< 0.003	< 0.003	0.003	0.004	0.005	0.005	0.005	0.004	<0.003	<0.003	< 0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	0.03	0.04	0.05	0.05	0.05	0.04	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.8	<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	8	<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	<0.5	0.5	0.5	0.7	3.3	2.2	<0.5	1.3	2.7	1.5	<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	<5	5	5	7	33	22	<5	13	27	15	<5	mg/kg	TM38/PM0
Chloride [#]	0.9	0.3	0.3	0.4	<0.3	0.4	0.3	0.3	0.6	1.0	<0.3	mg/l	TM38/PM0
Chloride [#]	9	3	3	4	<3	4	<3	<3	6	10	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	<2	3	5	<2	2	3	3	4	<2	<2	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	30	50	<20	20	30	30	40	<20	<20	<20	mg/kg	TM60/PM0
рН	8.38	7.88	7.57	8.15	7.72	7.42	7.32	6.03	7.09	7.45	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	49	67	38	72	<35	40	44	38	114	36	<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	490	670	380	720	<350	400	440	380	1140	360	<350	mg/kg	TM20/PM0

Client Name:						
Reference:						
Location:						
Contact:						
JE Job No.:						

Ground Investigations Ireland 8660-04-19 Mill Road, Drogheda Aisling McDonnell 19/7701

Report : CEN 10:1 1 Batch

JE JOD NO.:	19/7701												
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60			
Sample ID	TP12	TP13	TP14	TP15	TP16	TP17	TP18	TP19	TP20	TP21			
Depth	0.50	1.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	Ploaso co	e attached n	otos for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date													
				01/05/2019				01/05/2019					
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019			No.
Dissolved Antimony [#]	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10) #	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium #	<0.003	<0.003	<0.003	<0.003	0.005	<0.003	<0.003	0.010	< 0.003	0.005	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	< 0.03	< 0.03	<0.03	<0.03	0.05	<0.03	< 0.03	0.10	< 0.03	0.05	< 0.03	mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005 <0.0015	mg/kg	TM30/PM17 TM30/PM17										
Dissolved Chromium [#] Dissolved Chromium (A10) [#]	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007	<0.013	<0.013	0.009	<0.013	<0.007	<0.007	<0.007	<0.013	<0.013	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07	<0.07	<0.07	0.09	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead [#]	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	<0.002	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	0.002	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	0.002	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium [#]	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.4	<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	4	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	<0.5	1.0	0.5	1.5	0.7	1.6	2.4	1.4	<0.5	0.5	<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	<5	10	5	15	7	16	24	14	<5	<5	<5	mg/kg	TM38/PM0
Chloride [#]	0.5	0.4	<0.3	0.4	0.6	<0.3	<0.3	<0.3	0.4	0.4	<0.3	mg/l	TM38/PM0
Chloride [#]	5	4	<3	4	6	<3	<3	<3	4	4	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	3	<2	3	3	5	3	3	2	<2	2	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30	<20	30	30	50	30	30	<20	<20	<20	<20	mg/kg	TM60/PM0
рН	7.47	7.99	7.81	7.52	7.19	7.23	7.08	7.70	7.72	7.79	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	<35	50	61	50	59	53	35	82	43	89	<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	<350	500	610	500	590	530	350	820	430	890	<350	mg/kg	TM20/PM0

 Client Name:
 Ground

 Reference:
 8660-04

 Location:
 Mill Roa

 Contact:
 Aisling

JE Job No.:

Ground Investigations Ireland 8660-04-19 Mill Road, Drogheda Aisling McDonnell

19/7701

Report : EN12457_2

JE Job No.:	19/7701															
J E Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30						
Sample ID	TP01	TP02	TP03	TP04	TP06	TP07	TP08	TP09	TP10	TP11						
Depth	0.50	0.50	1.00	0.50	0.50	0.50	0.50	0.50	0.50	0.50				Diagon on	e attached n	atoo for all
COC No / misc															ations and a	
Containers	VJT															
Sample Date	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	01/05/2019	01/05/2019	01/05/2019	01/05/2019						
Sample Type	Soil															
Batch Number	1	1	1	1	1	1	1	1	1	1						
Date of Receipt					13/05/2019					13/05/2019	Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Solid Waste Analysis	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019						
Total Organic Carbon #	0.43	0.91	0.35	0.76	0.33	0.35	0.56	0.68	0.60	0.38	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	6	-	-	<0.025	mg/kg	TM31/PM12
Sum of 7 PCBs	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6	<0.22	<0.22	<0.22	7.19	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	14.74	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic [#]	0.039	<0.025	<0.025	0.050	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium "	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.11	0.04	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium "	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper "	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.06	<0.02	0.04	0.17	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel "	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead "	<0.05 <0.02	0.5	10 0.7	50 5	<0.05 <0.02	mg/kg mg/kg	TM30/PM17 TM30/PM17									
Antimony# Selenium#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.00	0.5	7	<0.02	mg/kg	TM30/PM17
Zinc "	<0.03	<0.03	0.03	0.04	0.05	0.05	0.05	0.04	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids	490	670	380	720	<350	400	440	380	1140	360	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	30	50	<20	20	30	30	40	<20	<20	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1102	0.1139	0.1096	0.1107	0.1079	0.1119	0.1065	0.1136	0.1144	0.1054	-	-	-		ka	NONE/PM17
Dry Matter Content Ratio	81.6	78.9	82.4	81.5	83.2	80.3	84.2	79.0	79.0	85.4	-	-	-	<0.1	kg %	NONE/PM17 NONE/PM4
Leachant Volume	0.88	0.876	0.881	0.879	0.882	0.878	0.883	0.876	0.876	0.885	-	-	-		1	NONE/PM17
Eluate Volume	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.82	0.55	0.6	-	-	-		I.	NONE/PM17
		a :-					0	a :-								THEOREM
рН "	8.61	8.15	8.09	8.44	7.98	7.65	8.26	6.49	7.63	7.51	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	8	-	-	-	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	<5	5	5	7	33	22	<5	13	27	15	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	9	3	3	4	<3	4	<3	<3	6	10	800	15000	25000	<3	mg/kg	TM38/PM0
oniondo					-		-								5 5	
								1					1			

Client Name: 8660-04-19 Mill Road, Drogheda Aisling McDonnell Reference: Location: Contact: JE Job No.: 19/7701

Ground Investigations Ireland

Report : EN12457_2

	19/7701															
J E Sample No.	31-33	34-36	37-39	40-42	43-45	46-48	49-51	52-54	55-57	58-60						
Sample ID	TP12	TP13	TP14	TP15	TP16	TP17	TP18	TP19	TP20	TP21						
Depth	0.50	1.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50				Disesses		
COC No / misc															e attached n ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date			01/05/2019	01/05/2019	01/05/2019	01/05/2019	01/05/2019	01/05/2019	01/05/2019							
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1	1	1	1						
											Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Date of Receipt Solid Waste Analysis	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019	13/05/2019						
Total Organic Carbon #	0.91	0.13	0.48	0.49	1.54	0.46	0.42	0.50	0.24	0.70	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	6	-	-	<0.025	mg/kg	TM31/PM12
Sum of 7 PCBs	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6	<0.22	<0.22	<0.22	<0.22	0.32	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic"	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium "	<0.03	<0.03	<0.03	<0.03	0.05	<0.03	<0.03	0.10	<0.03	0.05	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium "	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium "	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper "	<0.07	<0.07	<0.07	<0.07	0.09	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel [#]	0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead # Antimony #	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	0.5	10 0.7	50 5	<0.05 <0.02	mg/kg mg/kg	TM30/PM17 TM30/PM17
Selenium #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.00	0.5	7	<0.02	mg/kg	TM30/PM17
Zinc "	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	0.03	<0.03	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids	<350	500	610	500	590	530	350	820	430	890	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	30	<20	30	30	50	30	30	<20	<20	<20	500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1106	0.1017	0.1049	0.1082	0.1124	0.1089	0.1056	0.1102	0.1027	0.1093	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	81.6	88.1	85.5	83.3	80.3	82.4	85.4	81.3	87.7	82.7	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.88	0.888	0.885	0.882	0.878	0.881	0.885	0.879	0.887	0.881	-	-	-	-	1	NONE/PM17
Eluate Volume	0.82	0.78	0.85	0.85	0.82	0.81	0.85	0.7	0.8	0.85	-	-	-		- I	NONE/PM17
рН "	6.38	8.62	7.50	7.26	6.91	7.51	7.34	7.87	8.59	8.07	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	_	_	<0.1	mg/kg	TM26/PM0
	40.1	50.1	50.1	50.1	50.1	50.1	40.1	50.1		50.1				50.1	ing/kg	111120/11110
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	4	-	-	-	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	<5	10	5	15	7	16	24	14	<5	<5	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	5	4	<3	4	6	<3	<3	<3	4	4	800	15000	25000	<3	mg/kg	TM38/PM0

Matrix		• •• •	
MOtriv		Solid	
	-	JUNU	
		•••••	

Client Name:	Ground Investigations Ireland
Reference:	8660-04-19
Location:	Mill Road, Drogheda
Contact:	Aisling McDonnell

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	EPH Interpretation
19/7701	1	TP01	0.50	1-3	No interpretation possible
19/7701	1	TP02	0.50	4-6	No interpretation possible
19/7701	1	TP03	1.00	7-9	No interpretation possible
19/7701	1	TP04	0.50	10-12	PAH's
19/7701	1	TP06	0.50	13-15	No interpretation possible
19/7701	1	TP07	0.50	16-18	No interpretation possible
19/7701	1	TP08	0.50	19-21	No interpretation possible
19/7701	1	TP09	0.50	22-24	No interpretation possible
19/7701	1	TP10	0.50	25-27	No interpretation possible
19/7701	1	TP11	0.50	28-30	No interpretation possible
19/7701	1	TP12	0.50	31-33	No interpretation possible
19/7701	1	TP13	1.50	34-36	No interpretation possible
19/7701	1	TP14	0.50	37-39	No interpretation possible
19/7701	1	TP15	0.50	40-42	No interpretation possible
19/7701	1	TP16	0.50	43-45	No interpretation possible
19/7701	1	TP17	0.50	46-48	No interpretation possible
19/7701	1	TP18	0.50	49-51	No interpretation possible
19/7701	1	TP19	0.50	52-54	No interpretation possible
19/7701	1	TP20	0.50	55-57	No interpretation possible
19/7701	1	TP21	0.50	58-60	No interpretation possible

Client Name: Reference:	Ground Investigations Ireland 19/04/8660
Location:	Mill Road, Drogheda
Contact:	Aisling McDonnell

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/7701	1	TP01	0.50	2	17/05/2019	General Description (Bulk Analysis)	soil-stones
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP02	0.50	5	17/05/2019	General Description (Bulk Analysis)	soil-stones
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP03	1.00	8	17/05/2019	General Description (Bulk Analysis)	soil-stones
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP04	0.50	11	17/05/2019	General Description (Bulk Analysis)	soil-stones
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP06	0.50	14	17/05/2019	General Description (Bulk Analysis)	soil-stones
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP07	0.50	17	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP08	0.50	20	17/05/2019	General Description (Bulk Analysis)	soil.stones
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD

Jones Environmental Laboratory

Client Name:	Ground
Reference:	19/04/8
Location:	Mill Ro
Contact:	Aisling

Locatio Contac				d, Droghe IcDonnell	da		
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/7701	1	TP08	0.50	20	17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP09	0.50	23	17/05/2019	General Description (Bulk Analysis)	soil.stones
10,1101	•		0.00	20	17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP10	0.50	26	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
10/1101			0.00	20	17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP11	0.50	29	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP12	0.50	32	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP13	1.50	35	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP14	0.50	38	17/05/2019	General Description (Bulk Analysis)	soil-stones
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP15	0.50	41	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP16	0.50	44	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019 17/05/2019	Asbestos Type Asbestos Level Screen	NAD
					17/05/2019	LEAGI OCIGGII	
19/7701	1	TP17	0.50	47	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
					17/05/2019	Asbestos Fibres	NAD

Jones Environmental Laboratory

Jones	LIUV	nonmenu	ii Luboi	utory			
Client M	lame:				ions Ireland		
Referer			19/04/86				
Locatio Contac			Mill Road Aisling M				
	 		, using W	1			
J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
19/7701	1	TP17	0.50	47	17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP18	0.50	50	17/05/2019	General Description (Bulk Analysis)	soil-stones
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
19/7701	1	TP19	0.50	53	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
13/1101			0.00	55	17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Type Asbestos Level Screen	NAD
					17/05/2019	LEAGI OCIGGII	
19/7701	1	TP20	0.50	56	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
					11/00/2010		
19/7701	1	TP21	0.50	59	17/05/2019	General Description (Bulk Analysis)	Soil/Stone
					17/05/2019	Asbestos Fibres	NAD
					17/05/2019	Asbestos ACM	NAD
					17/05/2019	Asbestos Type	NAD
					17/05/2019	Asbestos Level Screen	NAD
L							

Client Name:Ground Investigations IrelandReference:8660-04-19Location:Mill Road, DroghedaContact:Aisling McDonnell

JΕ J E Sample Sample ID Job Batch Depth Analysis Reason No. No. 19/7701 TP01 0.50 1-3 EPH, PAH, PCB Sample holding time exceeded 1 TP02 EPH. PAH. PCB 19/7701 1 0.50 4-6 Sample holding time exceeded 19/7701 1 TP03 1.00 7-9 EPH, PAH, PCB Sample holding time exceeded TP04 0.50 EPH, PAH, PCB 19/7701 1 10-12 Sample holding time exceeded TP06 0.50 EPH, PAH, PCB 19/7701 1 13-15 Sample holding time exceeded 19/7701 1 **TP07** 0.50 16-18 EPH, PAH, PCB Sample holding time exceeded TP08 EPH. PAH. PCB Sample holding time exceeded 19/7701 1 0.50 19-21 EPH, PAH, PCB 19/7701 1 TP09 0.50 22-24 Sample holding time exceeded 19/7701 1 **TP10** 0.50 25-27 EPH, PAH, PCB Sample holding time exceeded TP11 0.50 EPH, PAH, PCB 19/7701 1 28-30 Sample holding time exceeded TP12 19/7701 1 0.50 31-33 EPH, PAH, PCB Sample holding time exceeded 19/7701 1 TP13 1.50 34-36 EPH, PAH, PCB Sample holding time exceeded EPH, PAH, PCB 19/7701 1 TP14 0.50 37-39 Sample holding time exceeded 19/7701 1 TP15 0.50 40-42 EPH, PAH, PCB Sample holding time exceeded 19/7701 1 TP16 0.50 43-45 EPH, PAH, PCB Sample holding time exceeded 19/7701 1 TP17 0.50 46-48 EPH, PAH, PCB Sample holding time exceeded **TP18** 0.50 EPH, PAH, PCB Sample holding time exceeded 19/7701 1 49-51 1 TP19 0.50 52-54 EPH, PAH, PCB Sample holding time exceeded 19/7701 19/7701 1 TP20 0.50 55-57 EPH, PAH, PCB Sample holding time exceeded TP21 19/7701 1 0.50 58-60 EPH, PAH, PCB Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Matrix : Solid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 19/7701

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Appendix - Methods used for WAC (2003/33/EC)

JE Job No.:

19/7701

Leachate tests	
10l/kg; 4mm	I.S. EN 12457-2:2002 Specified particle size; water added to L/S ratio; capped; agitated for 24 ± 0.5 hours; eluate settled and
-	filtered over 0.45 µm membrane filter.
Eluate analysi	S
As	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ва	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cd	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cr total	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Cu	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Hg	I.S. EN 13370 rec. EN 1483 (CVAAS)
No	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ni	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Ър	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
<u>Sb</u>	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Se Zn	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
	I.S. EN 12506 : EN ISO 11885 (ICP-OES)
Chloride Fluoride	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions) I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Sulphate	I.S. EN 12506 rec. EN ISO 10304-part 1 (liquid chromatography of ions)
Phenol index	I.S. EN 13370 rec. ISO 6439 (4-Aminoantipyrine spectrometic methods after distillation)* (BY HPLC - Jones Env)
DOC	I.S. EN 1484
TDS	I.S. EN 15216
Compositiona	l analysis
TOC	I.S. EN 13137 Method B: carbonates removed with acid; TOC by combustion.
BTEX	GC-FID
PCB7**	I.S. EN 15308 analysis by GC-ECD.
Vineral oil	I.S. EN 14039 C10 to C40 analysis by GC-FID.
PAH17***	I.S. EN 15527 PAH17 analysis by GC-MS
Vetals	I.S. EN 13657 - Aqua regia digestion: EN ISO 11885 (ICP-OES)
Other	
	I.S. EN 14346 sample is dried to a constant mass in an oven at 105 ± 3 °C; Method B Water content by direct Karl-Fisch
Ory matter	titration and either volumetric or coulometric detection.
_0	I.S. EN 15169 Difference in mass after heating in a furnace up to 550 ± 25 °C.
ANC	CEN/TS 15364 Determined by amouns of acid or base needed to cover the pH range
Notes:	
	due to LOD, precision, etc., any other suitable method can be used, e.g. AFS, ICP-MS -52, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180
	Aconomistical Aconomistical Arthrogona Ronzo(a)anthrogona Ronzo(b)fluoranthona Ronzo(k)fluoranthona

***Naphthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Phenanthrene and Pyrene.

Method Code Appendix

JE Job No: 19/7701

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

JE Job No: 19/7701

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes

Method Code Appendix

JE Job No: 19/7701

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland ac-MR Aisling McDonnell Attention : Date : 20th June, 2019 8660-04-19 Your reference : Our reference : Test Report 19/9329 Batch 1 Mill Road Drogheda Location : Date samples received : 10th June, 2019 Status : Final report

Nine samples were received for analysis on 10th June, 2019 of which nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

1

Compiled By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Element Materials Technology

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 8660-04-19 Mill Road Drogheda Aisling McDonnell 19/9329

Report : Solid

EMI JOD NO:	19/9329									_		
EMT Sample No.	1	2	3	4	5	6	7	8	9			
Sample ID	TP01	TP02	TP03	TP06	TP07	TP08	TP09	TP10	TP11			
Depth	0.50	0.50	1.00	0.50	0.50	0.50	0.50	0.50	0.50	Please se	e attached n	otes for all
COC No / misc											ations and ad	
Containers	т	т	т	т	т	т	т	т	т			
Sample Date	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	01/05/2019	01/05/2019	01/05/2019	01/05/2019			
Sample Type	Soil											
Batch Number	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	10/06/2019	10/06/2019	10/06/2019	10/06/2019	10/06/2019	10/06/2019	10/06/2019	10/06/2019	10/06/2019	LOD/LOK	Units	No.
Sulphate as SO4 (2:1 Ext) #	0.0027	0.0167	0.0025	0.0155	0.0108	0.0079	0.0125	0.0106	0.0152	<0.0015	g/l	TM38/PM20
рН [#]	8.63	8.13	8.17	8.05	7.91	8.23	6.77	7.70	6.69	<0.01	pH units	TM73/PM11
P11			-		-		-				• • •	

Element Materials Technology

Client Name:Ground Investigations IrelandReference:8660-04-19Location:Mill Road DroghedaContact:Aisling McDonnell

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
19/9329	1	TP01	0.50	1	pH, Sulphate	Sample holding time exceeded prior to receipt
19/9329	1	TP02	0.50	2	pH, Sulphate	Sample holding time exceeded prior to receipt
19/9329	1	TP03	1.00	3	pH, Sulphate	Sample holding time exceeded prior to receipt
19/9329	1	TP06	0.50	4	pH, Sulphate	Sample holding time exceeded prior to receipt
19/9329	1	TP07	0.50	5	pH, Sulphate	Sample holding time exceeded prior to receipt
19/9329	1	TP08	0.50	6	pH, Sulphate	Sample holding time exceeded prior to receipt
19/9329	1	TP09	0.50	7	pH, Sulphate	Sample holding time exceeded prior to receipt
19/9329	1	TP10	0.50	8	pH, Sulphate	Sample holding time exceeded prior to receipt
19/9329	1	TP11	0.50	9	pH, Sulphate	Sample holding time exceeded prior to receipt

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Matrix : Solid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No: 19/9329

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Element Materials Technology

EMT Job No: 19/9329

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

APPENDIX 7 – Groundwater Monitoring

Ground Investigations Ireland Ltd., Catherinestown House, Hazelhatch Road, Newcastle, Co Dublin. Tel: 01 601 5175 / 5176 | Fax: 01 601 5173 Email: info@gii.ie | Web: gii.ie

GROUNDWATER MONITORING

Mill Road Drogheda

BOREHOLE	DATE	TIME	GROUNDWATER (mBGL)	Comments
RC05	16/07/2019	3.57pm	3.57	
RC05	02/08/2019	3.55pm	3.75	